

File: 292-30/OGC2021-011

December 24, 2021

VIA ELECTRONIC MAIL:

Dear

Re: Request for Information – Release Freedom of Information and Protection of Privacy Act (FOIPPA)

I am writing further to your request received by the BC Oil and Gas Commission (Commission) for: *"TC Energy's geotechnical plans for the drilling under the Morice River."*

Please find enclosed a copy of the records located in response to your request. These records will be published on the Commission's website 72 hours after release. To find out more about the proactive disclosure of requests, please access the Commission's website at: <u>https://www.bcogc.ca/about/freedom-of-information/</u>

Your file is now closed.

Pursuant to section 52 of the FOIPPA, you may ask the Office of the Information and Privacy Commissioner (OIPC) to review any decision, act, or failure to act with regard to your request under FOIPPA.

Please note that you have 30 business days to file your review with the OIPC. In order to request a review please write to:

Information and Privacy Commissioner PO Box 9038 Stn Prov Govt 4th Floor, 947 Fort Street Victoria BC V8W 9A4 Phone: 250.387.5629 Fax: 250.387.1696 Email: <u>info@oipc.bc.ca</u>

If you request a review, please provide the OIPC with a copy of your original request, a copy of the Commission's response, and the reasons or grounds upon which you are requesting the review. Further information on the complaint and review process can be found on the OIPC website: <u>https://www.oipc.bc.ca</u>

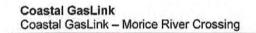
Please write <u>FOIIntake@bcogc.ca</u>, if you have any questions regarding your request.

Sincerely,

Julie Davidsen

Julie Davidson FOIPP Specialist BC Oil and Gas Commission

Coastal Gast, ink – Morice River Crossing

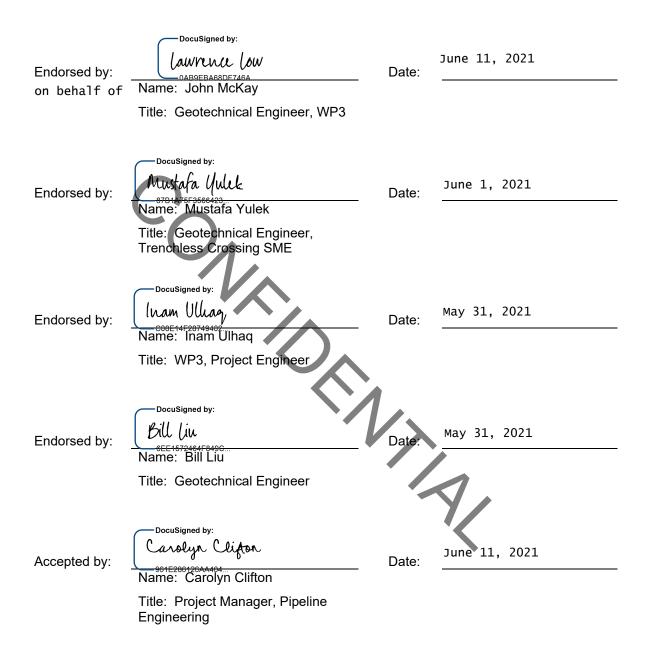

Geophysical and Geotechnical Investigation

CGL4703-GALV-GT-RP-0035

May 28, 2021 Revision 1

Issued for Use

Confidential



Revision 1 May 28, 2021 Issued for Use

CGL4703-GALV-GT-RP-0035

Authorization Page

Coastal GasLink

Revision Log

Rev	Section	Revision Description
0	All	Issued for Use
1	Section 5.6.7	Addition of ARD/ML Geochemical section, Issued for Use
1	Attachment	Updated Legal Limitations
1	Figure 5	Modelled Resistivity – BH20-MOR- updated bedrock elevation adjusted upwards by 1 m
	C_{\circ}	

REPORT

Coastal GasLink - Morice River Crossing

Geophysical and Geotechnical Investigation

Distribution List

1 e-copy - Coastal GasLink Ltd.

1 e-copy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION	1
2.0	SITE	AND PROJECT DESCRIPTION	2
3.0	GEOT	RECHNICAL AND GEOPHYSICAL INVESTIGATIONS	2
	3.1	Geophysical Field Program and Data Acquisition	3
	3.2	Borehole Investigation	4
	3.2.1	Borehole Closure and Drill Water Management	6
	3.3	Laboratory Testing	7
	3.3.1	Petrographic Examination of Gravel Portions – CSA A23.2-15A/ASTM C295/C295-19	8
	3.3.2	Petrographic Examination of Collected Rock Core – ASTM C1721-15	8
	3.3.3	Unconfined Compressive Strength Testing – ASTM D7012-07	8
	3.3.4	Point Load Strength Index Test – ASTM D5731	8
	3.3.5	Cerchar Abrasivity Tests – ASTM D7625-10	8
	3.3.6	Acid Rock Drainage and Metal Leaching Geochemical Testing	
4.0		FICIAL AND BEDROCK GEOLOGY	
5.0	INFE	RRED SUBSURFACE CONDITIONS	12
	5.1	Geophysical Results	
	5.2	Inferred Glacial Outwash Deposits - Sands and Gravels	14
	5.3	Inferred Low Energy Glacial Outwash Deposits - Silt to Silty Clay	16
	5.4	Inferred Glaciolacustrine Deposits – Brown to Maroon Silt to Silty Clay	17
	5.5	Inferred Glacial Till Deposits – Silty Clayey Sand to Silty Clay	18
	5.6	Bedrock	19
	5.6.1	Geophysical Bedrock Interpretation	19
	5.6.2	Lithology	19
	5.6.3	Rock Quality Designation (RQD)	20
	5.6.4	Rock Strength	20
	5.6.5	Rock Abrasivity	21

6.0	CLOSUR	Ε	.24
	571	Bathymetric Survey	23
	5.7 Gr	oundwater Conditions	.23
	5.6.7.2	Metal Leaching (ML) Potential	.22
	5.6.7.1	Acid Rock Drainage (ARD) Potential	.21
	5.6.7	Acid Rock Drainage and Metal Leaching Geochemical Testing	.21
	5.6.6	Rock Dry Density	.21

TABLES

Table 1: Summary of Borehole Details	6
Table 2: Criteria for the Cerchar Abrasiveness Index	
Table 3: Screening Criteria for ARD Potential (ARCRP 2018, Section 4.1)	10
Table 4: Geotechnical Testing Summary - Inferred Glacial Outwash Sand and Gravel Deposits	15
Table 5: Petrographic Examination Results - Inferred Glacial Outwash Gravels	15
Table 6: Geotechnical Testing Summary – Inferred Low Energy Glacial Outwash Deposits	16
Table 7: Geotechnical Testing Summary - Inferred Glaciolacustrine Deposits	17
Table 8: Geotechnical Testing Summary - Inferred Glacial Till Deposits	18
Table 9: Geotechnical Testing Summary - Unconfined Compressive Strength	
Table 10: Geotechnical Testing Summary – Point Load Index (Is50)	21
Table 11: Geotechnical Testing Summary - Cerchar Abrasivity	21
Table 10. Geotechnical Testing Summary – Point Load Index (1550) Table 11: Geotechnical Testing Summary - Cerchar Abrasivity Table 12: Summary of Acid Base Accounting Results	22
FIGURES	
Figure 1: Key Plan	28
Figure 2: Site Plan	29
Figure 3: Bedrock Geology	30

ATTACHMENTS

Important Information and Limitations of this Report

APPENDICES

APPENDIX A Record of Borehole Sheets

APPENDIX B Soil Laboratory Results

APPENDIX C Rock Laboratory Results **APPENDIX D Rock Core Photographs** APPENDIX E **Geophysics Methods APPENDIX F** ARD/ML Geochemical Analysis Results

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Coastal GasLink (CGL) to conduct a geophysical survey and a geotechnical investigation to provide input to design for the proposed Morice River Crossing (The Site) along the proposed CGL right-of-way (ROW). Golder was authorized to carry out this work under Project Engineering Service Agreement No. 4600007484 and PO No. 4500278361 dated 5 November 2019.

Golder's scope of work is based on the river crossing designer, CCI Solutions (CCI), Scope of Work (SOW) package CGL4703-CCI-GT-SOW-0001 provided by CGL and based on email correspondence with CGL on 06 September 2019. The SOW herein is described in Golder's proposal submitted to CGL via email on 22 May 2019 (P19122805-001-P-Rev0).

Golder submitted a cost estimate for carrying out the Morice River investigation based on the CCI SOW to CGL on 22 January 2020. The updated cost estimate was approved by the CGL project team on 26 May 2020. Due to adjustments in scope at the Morice River Crossing, Golder provided an updated cost estimate to CGL via email on 15 October 2020.

The purpose of the investigation is to collect information on the subsoil and groundwater conditions as preliminary input to the design and construction of a subsurface pipeline crossing.

Based on developed SOW package, the agreed scope is summarized as follows:

- Conduct a pre-disturbance site inspection with a CGL Representative and the Prime Contractor, Pacific Atlantic Pipeline Construction (PAPC), supervisors to assess the suitability of the proposed sites.
 - This included the inspection of drill sites, general forest cover, clearing progress, river conditions, and proposed geophysics lines prior to drill or geophysics crew mobilizations. This was completed on 16 September 2020.
 - An additional pre-start site safety review was completed on 31 October 2020 where a borehole specific emergency response plan was reviewed with PAPC and CGL safety teams.
- Conduct a drilling investigation using a tracked sonic drill rig at two borehole locations terminated in bedrock or 30 metres below ground surface (BH20-MOR-01 and BH20-MOR-06) and one location to a depth of 60 meters below ground surface (BH20-MOR-05) regardless of bedrock depth. A coring head to be installed once bedrock has been encountered with drilling proceeding using HQ3 coring techniques to target depth of the borehole.
- Conduct a drilling investigation using a helicopter-portable sonic drill rig at one borehole location to 85 meters below ground surface (BH20-MOR-02) and two (2) borehole locations to 90 meters below ground surface (BH20-MOR-03 and BH20-MOR-04). A coring head to be installed once bedrock has been encountered with drilling proceeding using HQ3 coring techniques to target depth of the borehole.
- Collect geophysics data using Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods:
 - Collect data transects oriented along the proposed crossing path to investigate stratigraphy, including depth to bedrock, of proposed trenchless crossings at the Sites.
 - Survey parameters to be designed to investigate to the final depth of the proposed boreholes.

- ERT survey lines to be extended approximately 100 m past the proposed borehole locations and will include a geophysical transect across the river if safe crossing can be achieved.
- SRT survey lines to be extended approximately 100 m past the proposed borehole locations and will terminate on the eastern and western banks of the Morice River.
- Lateral positions of the survey to be recorded with a differential Global Positioning System (dGPS) device. Elevations to be extracted from existing LiDAR data during the data processing stage.
- River bottom bathymetry to be completed along the proposed Morice river crossing through shallow water Real-time Kinematic (RTK) surveying and zodiac mounted bathymetry equipment.
- Produce a factual geotechnical report including details of the subsurface investigation, material laboratory testing, processed and interpreted geophysical and bathymetric results in section and/or map format, summarizing the anticipated geotechnical conditions.

This factual report summarizes the methods used and the soil stratigraphic conditions encountered at the Sites as input for design and construction of the proposed river crossing. Use of this report is subject to conditions outlined in the *"Important Information and Limitations of this Report"* section which follows the main text and forms an integral part of this document.

Where comments are made on the general site conditions and impacts on future construction, they are provided to highlight aspects that could affect the design of the project. Those requiring information on geotechnical aspects of the site beyond the scope of this report must make their own interpretation of the subsurface information, particularly as it affects their proposed construction methods, costs, equipment selection, scheduling and the like.

2.0 SITE AND PROJECT DESCRIPTION

The Coastal GasLink project involves construction and operation of a natural gas pipeline from the area near the community of Groundbirch to the LNG Canada Development Inc. liquefied natural gas export facility near Kitimat, BC. The project includes the construction and operation of:

- Approximately 670 km of 1220 mm diameter pipeline
- Metering facilities at the receipt and delivery points at up to 3 locations
- Compressor stations at up to 8 locations.

The pipeline alignment extends over a variety of terrain, from mountainous, densely vegetated forest conditions with rivers and streams to moderately vegetated forest conditions, wetlands and rolling hills. There are several communities along the alignment, including many First Nations traditional territories.

As part of the pipeline construction, there will be several river and stream crossings. The proposed Morice River crossing is approximately located 52 km southwest of Houston, BC between CGL Kilometre Post (KP) 557+785 to 559+200.

3.0 GEOTECHNICAL AND GEOPHYSICAL INVESTIGATIONS

Golder completed a site reconnaissance with a CGL representative and PAPC supervisors on 16 September 2020 to assess the planned borehole locations, including inspection of drill sites, general forest cover, access conditions, and proposed geophysics lines prior to drill or geophysics crew mobilizations.

An additional pre-start safety review was completed on 31 October where a borehole-specific emergency response plan was reviewed by CGL and PAPC safety teams.

Golder completed a BC One Call prior to mobilization with no utilities identified onsite. A third party locate sweep was completed by PAPC sub-contractor Apex Geomatics on 15 October 2020, and no evidence of existing utilities was detected. Golder acquired a borehole specific PAPC Ground Disturbance permit prior to conducting any drilling operations at each Site.

Golder geophysics and geotechnical crews took part in PAPC Site Orientations and pre-access certifications prior to working at Site. Golder contacted the Yinka Dene Economic Development Limited Partnership (YDEDLP), the corporate business arm of the Wet'suwet'en Frist Nation, prior to the geophysics team mobilization to engage a geophysics helper for the upcoming investigation. The YDEDLP were unable to accommodate the request and Golder fulfilled the helper positions with Golder personnel. Site preparation and first aid was coordinated with PAPC and CGL.

3.1 Geophysical Field Program and Data Acquisition

The geophysical program was completed over two mobilizations to Site, the first being 1 to 9 November, 2020 and the second being 12 to 14 December, 2020. The combination ERT-SRT geophysics survey was designed to provide continuous coverage laterally and vertically between borehole locations. During all in-river operations the geophysics crew was accompanied by Raven Rescue personnel, a swift water rescue and safety planning subcontractor. Prior to the undertaking of all river work, a swift water rescue and risk mitigation plan was prepared by Raven Rescue staff. The in-river work consisted of bathymetric surveying and deploying the bottom-laid resistivity cable across the river. This work was completed using a 14-foot zodiac and 25-horsepower jet engine slung by helicopter to the riverbank. The rest of the geophysical alignment was accessed on-foot along the cleared ROW from parking locations at the far west and east ends of the survey area.

All geophysical data were collected along the proposed pipe centreline and survey lines were laid out along the cleared ROW. ERT data were collected using an ERT system manufactured by IRIS instruments. Resistivity surveys were completed using 10 m electrode spacing for a total ERT transect length of 1,700 m. Both dipole-dipole and Wenner-Schlumberger array types were collected. The maximum depth of investigation for the ERT survey is 90 metres below ground surface (mbgs). Seismic data were collected for the on-land portions of the transect on either side of the river. The SRT method measures variations of compressional or primary (p-wave) seismic wave velocity along a 2-D profile. SRT data were collected using a 24 channel Geometrics Geode seismic system, with 4.5 Hz geophones placed at 10 m spacing for a total of 1,600 m of SRT data. Bathymetric survey data were collected using a Sonarmite single-beam depth sounder and integrated real-time kinematic (RTK) positioning.

During the first mobilization (1 to 9 November 2020) all on-land SRT and ERT data up to the east and west banks of the Morice River were collected. An attempt was made to collect a continuous profile of ERT data spanning the river; however, the field work occurred during a period of high runoff and peak water volume in the Morice River making conditions unsuitable for safely deploying the resistivity cable across the river. High water levels also limited the bathymetric coverage to areas of the river that were safely accessible with the zodiac and 25-horsepower jet engine.

A second mobilization (12 to 14 December 2020) was required to collect ERT data beneath the river. Water levels were significantly lower during this period, allowing the field crew to wade from the west side of the river to approximately the centre of the river, laying the ERT cable along the river bottom for this portion. The eastern

portion of the river consists of class 2 rapids and shallow rocks which present a challenge to the standard boatdeployed bottom-laid cable approach. The field crew employed an alternative approach of setting up an anchor point at the mid-point of the river and tensioning the cable slightly submerged in the river from the mid-point anchor to an anchor on the east bank. Spotters were positioned upriver and downriver to direct any boat traffic to the west section of the river where the cable was bottom-laid. Once the in-river cable was positioned, resistivity cables and electrodes were installed on land on either side of the river for a total line length of 950 m, to achieve overlapping coverage with ERT data collected during the first mobilization.

The proposed crossing alignment was surveyed and cleared prior to the arrival of the geophysics crew. The location of electrodes and geophones were recorded using a differential Global Positioning System (dGPS) Trimble GeoXT GPS device generally capable of sub-metre horizontal precision. Elevations along the geophysical survey lines were extracted from a Light Detection and Ranging (LiDAR) data set provided to Golder by CGL. Positional information was integrated into the data for the velocity and resistivity modelling processes.

A site plan displaying the locations of the ERT/SRT transects, bathymetric coverage, and borehole locations is provided as Figure 2 in this report. The geophysical methods used are discussed in greater detail in APPENDIX E.

3.2 Borehole Investigation

To obtain site-specific subsurface geotechnical information, Golder conducted a drilling investigation between 02 November 2020 and 15 December 2020. A helicopter portable Boart Longyear 33K sonic drill rig owned and operated by Blue Max Drilling (Blue Max) out of Surrey, BC was used to complete boreholes BH20-MOR-02 and BH20-MOR-04, and a helicopter portable Hydracore HC5000S sonic drill rig owned and operated by Mud Bay Drilling (Mud Bay) out of Calgary, AB was used to complete borehole BH20-MOR-03. Track accessible boreholes (BH20-MOR-01, BH20-MOR-05, and BH20-MOR-06) were completed using a tracked Boart Longyear LS250 sonic drill rig owned and operated by Blue Max, out of Terrace BC. Helicopter portable drill rigs were staged from the CGL Laydown 29 for the duration of the drilling investigation. Mobilization of helicopter portable drilling equipment was completed using a Eurocopter A-Star B3 helicopter owned and operated by Canadian Helicopters, out of Smithers BC and under contract to CGL. As directed by CGL and PAPC, the CGL Laydown 29 was utilized for all helicopter portable drill rig refueling operations. All drilling equipment underwent an environmental inspection by CGL Section 7 Environmental Inspectors at the PAPC Huckleberry Camp prior to mobilizing to site.

All drilling, setup and slinging operations were monitored and observed by members of Golder's geotechnical staff, who logged the subsurface soil, rock and groundwater conditions at each borehole location and collected samples for visual classification and laboratory testing. Selected representative soil and rock samples were submitted for laboratory testing. Detailed descriptions of the subsurface soil and rock conditions encountered at each borehole location, together with laboratory index test results are presented in the Record of Sonic Hole and Drillhole Sheets in APPENDIX A.

Field identification and classification of soils was conducted in accordance with Golder's soil classification system (June 2018, Revision 5) which is generally consistent with the concepts presented in ASTM International (ASTM) D2487 and D2488 and the Canadian Foundation Engineering Manual (CFEM, 2017), with some differences intended to improve the compatibility of the soil descriptions with the material geotechnical engineering behaviour. This system is generally consistent with the Unified Soil Classification System (USCS). Coarse-grained soils are classified based on USCS and are described in terms of relative proportions of the mineral constituents; whereas, fine-grained soils are classified with reference to Golder's soil classification system, and are based on plasticity

(Atterberg limits testing) with reference to the ASTM D2487 plasticity chart. A summary of the key aspects of Golder's soil classification system is presented on the "Geotechnical Soil Description Terminology" fly sheets, which immediately precede the Record of Sonic Hole and Drillhole sheets in APPENDIX A.

The geotechnical drilling investigation program consisted of six boreholes advanced from 8.23 to 90.18 m depth on the east and west sides of the Morice River. Boreholes were advanced utilizing sonic drill rigs capable of 127 and 171 mm casing sonic drilling and HQ coring methods. The borehole locations were adjusted from the original proposed locations described in the CCI SOW (Document Number: CGL4703-CCI-GT-SOW-0001) to comply with onsite environmental and access restrictions. Golder coordinated with CGL and CCI to adjust the location of the following boreholes BH20-MOR-02, BH20-MOR-03, and BH20-MOR-05 prior to conducting drilling operations:

- MOR-BH20-02 Borehole shifted approximately 18 m east to minimize disturbance to established protestor structure, mitigate impact to nearby non-classified drainage (NCD), and to allow for more favourable ground conditions for drilling and pad construction.
- MOR-BH20-03 Borehole shifted approximately 27 m north-west to maximize buffer between the drill site and the Morice River and to allow for more favourable ground conditions for drilling and pad construction.
- MOR-BH20-05 Borehole shifted approximately 8 m east to allow for more favourable ground conditions for drilling.

Boreholes were marked and surveyed in the field with a handheld GPS typically capable of +/- 5 m precision upon completion of grouting activities. A CGL-coordinated McElhanney survey crew completed a survey of the completed boreholes on 30 November, 04 and 09 December, 2020 and 09 April, 2021. The surveyed test hole coordinates and ground elevations are presented on the Record of Sonic Hole and Drillhole Sheets in APPENDIX A and Table 1. All depths referenced herein are to ground surface at the time of drilling.

Standard Penetration Test (SPT) split-spoon sampling was conducted at regular depth intervals (1.5 m) in the upper 15 m, where conditions allowed (i.e., not in rock), and every 3 m at greater depths, until termination of the borehole. It is noted that SPTs within sonic boreholes are not conducted strictly in accordance with ASTM standards, which calls for a mud-supported borehole. The drilling technique may affect the SPT test results, such that they cannot strictly be correlated to N-Values; however, Golder's experience is that the SPT in sonic boreholes provides useful data on relative density and consistency of the soils encountered, as well as disturbed samples. The sonic drilling method provides continuous core samples, which is very helpful in providing a near-continuous characterization of the subsurface conditions with few data gaps. Due to the vibratory nature of the sonic method, soil and weak rock structure as usually not preserved in the highly disturbed core. Detailed descriptions of the subsurface soil and rock conditions encountered at each borehole location, together with laboratory index test results, are presented in the Record of Borehole Sheets in APPENDIX A.

The collected rock core was photographed during Golder's detailed core logging phase at the Golder Terrace BC Office. No 'stitching' or any other digital processing of the photographs was conducted other than cropping and straightening. The core photographs presented in APPENDIX D are of the wet and dry core, which generally provided a good representation of the colour of the rock.

Table 1: Summary of Borehole Details

Borehole No.	Description	Northing (m)	Easting (m)	Elevation (m geodetic)	Termination Depth (mbgs)	Depth to Bedrock (mbgs)	Drilling Method
BH20-MOR-01	Entry Point (east side)	6004737.320	606921.850	768.15	65.58	-	Sonic
BH20-MOR-02	East Bank	6004862.530	606670.860	744.75	85.92	49.99	Sonic and HQ3
BH20-MOR-03	West Bank	6005000.640	606354.010	727.80	45.69	26.06	Sonic and HQ3
BH20-MOR-04	West Bank	6005093.480	606172.250	743.13	90.18	14.33	Sonic and HQ3
BH20-MOR-05	West Bank	6005195.950	605938.830	769.52	60.0	19.20	Sonic and HQ3
BH20-MOR-06	Exit Point (west side)	6005321.12	605671.63	777.66	8.23	1.68	Sonic

3.2.1 Borehole Closure and Drill Water Management

Upon completion, the boreholes were backfilled with cementitious grout via a 1" PVC tremie line and topped up with bentonite chips in conformance with BC Groundwater Protection Act (BC GWPA) regulations. As agreed with CGL, collected rock core was boxed and returned to the Golder Terrace office and soil drill cuttings were spread out onsite near the borehole locations.

Prior to conducting drilling activities at site, PAPC installed drill water containment sumps adjacent or directly under the proposed borehole locations for tracked and helicopter portable drilling operations, respectively. In general, the drill water return during sonic drilling was minimal and contained within the excavated sump. A notable increase in water returns while HQ3 rock coring was observed and periodic dewatering of the sump was required. Dewatering of the sump comprised of a 2" water line and pump system to remove collected drill water from the sump to a CGL approved discharge location. A CGL approved nominal diameter geotextile silt bag was affixed to the outlet of the 2" discharge line to mitigate the number of fines discharged to the ground surface. Discharged drill water was allowed to percolate back into the ground surface and was periodically monitored to mitigate inadvertent flow to nearby watercourses. No flow of discharged drill water to nearby watercourses was observed during Golder's field investigation.

Approved discharge locations were selected by CGL General Inspectors in the field and were generally located in areas where discharged water would not affect identified NCDs or other sensitive areas. Jacobs Engineering Group (JEG) provided water quality monitoring services to CGL of the nearby Morice River and Morice River side-channel during drilling operations at BH20-MOR-03 and BH20-MOR-04.

Additional water quality sampling of discharged drill water was completed at BH20-MOR-01 to BH20-MOR-04. Water quality sampling was completed by collecting water from the 2" discharge lines during sump dewatering

activities. All excess drill water during sampling was captured and discharged at the CGL approved discharge locations. Water quality sampling activities were monitored by CGL General Inspectors and the First Nations representative, Northwest Research and Monitoring (NWRM), out of Smithers BC.

3.3 Laboratory Testing

The soil samples collected in the field were shipped to Golder's Burnaby laboratory and testing was conducted on selected representative samples. The soil testing program consisted of sixty-four natural moisture contents, eight organic content determinations, nine Atterberg Limits, twenty-two particle size distribution tests, twelve hydrometer tests, and three standard specific gravity determinations.

Soil index testing was conducted at Golder's Burnaby laboratory and in accordance with ASTM standards as follows:

- ASTM D2216 Standard Test Method for Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D6913 Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
- ASTM D7928 Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D2974 Standard Test Methods for Determining the Water Content, Ash Content, and Organic Material of Peat and Other Organic Soils
- ASTM D854 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

Rock testing consisted of five Unconfined Compressive Strength (UCS) tests, one hundred fifty-six Point Load Tests (PLT), two rock core petrography tests, two gravel petrography tests, three Acid Rock Drainage / Metal Leaching (ARD/ML) geochemical analyses, three dry density determinations, and six Cerchar rock abrasivity tests.

Rock testing was conducted at Golder's Burnaby and Terrace laboratories and in general accordance with ASTM standards as follows:

- ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures
- ASTM D5731 Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications
- ASTM C295/C295-19 Standard Guide for Petrographic Examination of Aggregates for Concrete
- ASTM C1721-15 Standard Guide for Petrographic Examination of Dimension Stone
- ASTM D7625 Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method
- ISRM Suggested Methods for Determining Water Content, Porosity, Density, Absorption and Related Properties

The laboratory test results are presented in detail in APPENDIX B and APPENDIX C.

3.3.1 Petrographic Examination of Gravel Portions – CSA A23.2-15A/ASTM C295/C295-19

Petrographic examinations of granular materials were conducted on two selected overburden samples from boreholes BH20-MOR-01 and BH20-MOR-03. It should be noted that sand sized portions (0.075 to 4.75 mm) were not included in the petrographic examination. The gravel portion of the soil samples was evaluated and categorized by percent mass for each type of rock noting the shape, range of colours, textures, and lithologies. The detailed results from the petrographic examination are presented in APPENDIX C.

3.3.2 Petrographic Examination of Collected Rock Core – ASTM C1721-15

Petrographic examinations of collected HQ core were conducted on two selected samples from boreholes BH20-MOR-03 and BH20-MOR-04. Samples were selected to further understanding of the in-situ bedrock's physical and chemical characteristics for a potential trenchless crossing.

Rock samples were cut and polished by Precision Petrographics in Vancouver, BC in preparation for examination of samples in Golder's Burnaby Laboratory. The detailed results from the petrographic examination are presented in APPENDIX C.

3.3.3 Unconfined Compressive Strength Testing – ASTM D7012-07

Unconfined Compressive Strength (UCS) tests were conducted on four selected samples of bedrock. A fifth sample, sample no. 27 from BH20-MOR-05, broke during preparation and was found not to be suitable for testing. After sample preparation of sample no. 24 from BH20-MOR-04 it was determined that the sample length (1.94:1) did not conform to ASTM requirements on minimum sample size (2.0 to 2.5:1). However, it is noted that the sample is only slightly smaller (3.52 mm in height) than the ASTM requirements on minimum sample size, therefore, it will likely not result in any significant reduction of recorded UCS test results. Based on Golder's understanding of the UCS test, we infer that the non-standard test result would likely be a lower-bound value for the actual strength. The other tested samples conformed with the ASTM sample size requirement.

3.3.4 Point Load Strength Index Test – ASTM D5731

The Point Load index tests were conducted on one hundred fifty-six sample and are preformed by subjecting a rock specimen to an increasingly concentrated load until failure occurs by splitting the specimen. Loads are applied parallel (axial test) or perpendicular (diametral test) to the core axis. Point Load Strength Index values (Is₅₀) were calculated using the following equation, in accordance with ASTM specification D5731.

$$Is_{50} = \left(\frac{D_e^{0.5}}{50}\right)^{0.45} x \frac{P}{D_e^2}$$

Where D_e is the equivalent diameter and equal to the specimen diameter (D) for the diametral tests or $(4AD/\pi)^{0.5}$ for axial tests, A is the length of the sample between the PLT contact points or "platens", and P is the maximum applied load. Detailed laboratory tests results are presented in APPENDIX C.

3.3.5 Cerchar Abrasivity Tests – ASTM D7625-10

Cerchar Abrasivity testing was conducted to determine the Cerchar Abrasivity Index (CAI) of selected rock samples from the geotechnical investigation. CAI data is collected by measuring the wear of a steel stylus tip after it has been used to abrade a specimen under a specific normal force over a set distance of 10 mm. A microscope

is used to measure the wear surface area of the stylus and then multiplied by 10 to produce the dimensionless unit CAI. Cerchar Abrasivity test results were averaged based on the rock unit and cross-referenced against the Cerchar Abrasiveness Index described in Table 2.

Classification	Average CAI (Cerchar, 1986)	Average CAI (Michalakopoulos et al, 2006)
Very Low Abrasiveness	0.3 – 0.50	0.32 – 0.66
Low Abrasiveness	0.50 – 1.00	0.66 – 1.51
Medium Abrasiveness	1.00 – 2.00	1.51 – 3.22
High Abrasiveness	2.00 - 4.00	3.22 - 6.62
Extreme Abrasiveness	4.00 – 6.00	6.62 – 10.03
Quartzitic	6.00 – 7.00	N/A

Table 2: Criteria for the Cerchar Abrasiveness Index

3.3.6 Acid Rock Drainage and Metal Leaching Geochemical Testing

Geochemical analysis was carried out on four samples obtained from the geotechnical rock core. The purpose of the analysis was to assess the acid rock drainage and metal leaching (ARD/ML) potential of bedrock encountered at the proposed compressor station site, which may be excavated and potentially re-used for construction purposes. The samples were submitted to SGS Canada Inc. (SGS) in Burnaby, British Columbia for specialized geochemical analysis to assess ARD/ML potential. SGS carried out the requested analyses according to the following methods:

Acid Base Accounting (rock) (ABA) – ABA testing provides quantitative information on the sulphidesulphur concentration, and other sulphur species in a rock sample. The oxidation of sulphide-sulphur is the primary chemical process responsible for the acid rock drainage potential of a rock sample (MEND 2009)¹.

Total metals (rock) (ICP) by ICP-MS (Multi-Element Analysis) - Analysis of the rock samples was carried out to measure the solid-phase concentrations of various metals that could affect site drainage quality.

Shake Flask Extraction (leachate test) (SFE) - SFE testing provides preliminary information on the leaching potential of various geochemical parameters in leachates generated from contact between crushed rock and de-ionized water. Geochemical analyses of the SFE leachates included dissolved phase major and trace cations, dissolved anions, acidity/alkalinity, pH, hardness and conductivity.

Laboratory data from ABA, ICP and SFE testing was used to assess ARD potential and initial indications of ML potential of the rock samples tested. Definitions of the ABA test parameters used to characterize the ARD potential of a rock sample are as follows:

¹ MEND. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. CANMET – Mining and Minerals Sciences Laboratories, Natural Resources Canada. MEND Report 1.20.1.

Acid generation potential (AP) is calculated from the sulphide sulphur concentration of a rock. The acid generation potential of most typical rock is associated with the process of oxidation of sulphide minerals such as pyrite (MEND 2009).

Bulk acid neutralization potential (also referred to as "Sobek NP" or "NP") of a sample is considered to reflect the NP contributions from carbonate minerals such as calcite as well as other reactive silicates that may be available to contribute to acid neutralization (MEND 2009).

Carbonate acid neutralization potential (carbonate NP, or caNP) assumes the NP is in the form of reactive carbonates, specifically calcite (MEND 2009). The Sobek NP of a given rock sample is typically higher than the carbonate NP for rocks containing both carbonate and aluminosilicate minerals, as a result of the relatively aggressive nature of the geochemical test method.

Neutralization potential ratio (NPR) is defined as the ratio of the acid neutralization potential to the acid generation potential (i.e., NPR = NP/AP) and can be used to classify sulphide-bearing rocks according to their ARD potential (MEND 2009). Table 3 provides a summary of the screening criteria for the classification of ARD potential based on the scheme proposed in the ARCRP (2018), which is a variant of the ARD classification presented in MEND (2009). For the purposes of this screening level assessment, an NPR based on the ratio of the carbonate NP (caNP) to the AP of less than 1.0 is considered to indicate that a rock sample is *potentially acidic drainage generating* (PAG). An NPR of between 1.0 and 2.0 is considered to indicate the rock sample is *not acidic drainage generating* (Non-PAG).

Acid Rock Drainage Potential Assessment

The MEND (2009) ARD classification criteria have been adopted with minor modification for the CGL project according to Section 4.1 of the *Acid Rock Construction Response Plan* (ARCRP, Coastal GasLink 2018)². The classification system being used for CGL is presented in Table 3. Under the ARCRP, the carbonate NP is to be used in classification of ARD potential. NPRs calculated using the bulk NP will also be considered for comparison purposes.

Screening Criteria	ARD Potential
NPR < 1 and sulphide sulphur $\ge 0.1\%$	Potentially Acidic Drainage Generating (PAG)
$1 \leq NPR \leq 2$ and sulphide sulphur $\geq 0.1\%$	Uncertain of Generating Acidic Drainage
NPR > 2 or sulphide sulphur < 0.1%	Not Potentially Acidic Drainage Generating (non-PAG)

Table 3: Screening Criteria for ARD Potential (ARCRP 2018, Section 4.1)

NPR = Neutralization Potential Ratio based on ratio of carbonate neutralization potential to acid potential

² Coastal GasLink (ARCRP). 6 November 2018. Acid Rock Construction Response Plan. Revision 3. Prepared for the British Columbia Oil and Gas Commission. Coastal GasLink Pipeline Project: CGL document no. CGL4703-CGP-ENV-PLN-014.

Metal Leaching Potential Assessment

Total Metals (ICP) Assessment

The total metals results for selected parameters were compared to "normal trace element concentrations in selected rock types" according to Price (1997)³. The rock types associated with the normal trace element concentrations presented in Price were selected based on similarities with the sample lithologies indicated in Section 5.6.2. Metal concentrations measured in the samples collected from the various sites in Section 8 were compared to one, five and ten times (i.e. 1x, 5x and 10x) the values presented in Price (1997). This comparison is made to identify geochemical parameters present in the rock at concentrations that may have the potential to affect water quality as a result of contact between surface water and excavated rock material or rock cuts, i.e. "contact water" quality. Exceedances identified by the comparison are not indicative of an ML concern, however, when viewed together with shake flask extraction testing results, they can be useful in the interpretation of ML potential and whether additional testing may be required to assess metal leachability.

Shake Flask Extraction (SFE) Assessment

The SFE results were compared to current approved and working British Columbia Water Quality Guidelines (BC WQG) for the protection of freshwater aquatic life. This comparison is conducted to identify potential geochemical parameters of concern present in the rock that may have the potential to affect contact water quality. The results of the SFE testing are not intended to be a simulation of expected or actual site drainage quality but are useful in developing a preliminary understanding of the potential leachability of geochemical parameters of concern, particularly selected trace metals.

4.0 SURFICIAL AND BEDROCK GEOLOGY

Regional geological mapping (Cui *et al.*, 2017) indicates that the general bedrock geology at the proposed Morice River Crossing site comprises Paleogene (23 to 65 million years old) sandstone, siltstone, conglomerate, shale, coaly shale, coal, interbedded tuff, tuffaceous siltstone, and fanglomerates of the Sifton Formation. Based on published geological mapping the bedrock is assumed to be of fluvial origin. A visual representation of mapped bedrock areas along the proposed Morice River Crossing is presented in Figure 3.

Geological Survey of Canada's geology of Smithers Area map (Tipper and Richards, 1976) and the preliminary interpretation of glacial features of the Smithers Area map (Tipper, 1994) indicates that the Morice River Crossing is located in an extensive area of Quaternary glacial outwash deposits. Surficial geology is expected to generally comprise of recent alluvium, till, and outwash sediments such as sand and gravel mixtures with some inclusions of cobbles, boulders, and discrete deposits of fine-grained silts and clays. Preglacial river channels have not been identified on maps reviewed by Golder, although the presence of such channels could impact the proposed directional drilling pathway. If existing, preglacial river channels are expected to have incised into the existing bedrock and may not coincide with the current river channel location. Preglacial river channels are expected to comprise of sand to boulder sized alluvial deposits.

Terrain mapping conducted by Worley Parsons (2019) for CGL (CGL Document No. CGL4703-WPC-G-MP-065_0) indicates that the Morice River Crossing topography generally comprises of flat to gently sloping upland landforms with valley slopes comprising of terraces interconnected by steep potentially unstable slopes (27% -

³ Price, W.A. 1997. DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. British Columbia Ministry of Employment and Investment, Energy and Minerals Division, Smithers, BC, (April), 143 p.

70%). Mapped terrain stability classes and slope classes for the proposed CGL Morice River Crossing area range from I - V and 1 - 5, respectively. An additional site investigation pertinent to landslides has been competed by Worley in this area (CGL4703-WPC-GT-RP-049_0, Appendix F). Surficial geology of the upland area (proposed crossing entry and exit points and BH20-MOR-05) generally comprises a gravelly silty sand veneer of fluvial origins underlain by glaciolacustrine clayey silty sands. The surficial geology along the valley slopes identifies clayey silty sand, gravelly sand, and gravelly silty sand of glaciolacustrine origin. The drainage is classified as moderate to well. The base of the Morice River valley comprises level to gently sloped (0-26%) sandy gravel and gravelly sand terraces of glaciofluvial origin and fluvial gravelly silty sand plains. Drainage is classified as well to imperfect drainage.

5.0 INFERRED SUBSURFACE CONDITIONS

Detailed descriptions of the soil, bedrock and groundwater conditions encountered at the test hole locations are presented on the Record of Sonic Hole and Record of Drillhole sheets in APPENDIX A. Results of the geotechnical laboratory tests are presented in APPENDIX B.

The following sections summarize the soil and groundwater conditions encountered at the test hole locations. The interpretation presented herein is based on the stratigraphy encountered at the specific borehole locations only, augmented by interpretation of the geophysics surveying. The actual soil and groundwater conditions may vary between boreholes and is expected to vary with increasing distance away (north – south) from the investigated alignment.

In general, the inferred subsurface conditions at the site are as follows:

- Compact to very dense inferred glacial outwash deposits comprising high-energy depositional environments, sands and gravels, to low-energy depositional environments, non-plastic silt to low plasticity silty clays.
- Glaciolacustrine deposits of very stiff to hard silt to silty clay, brown to maroon in colour, varved with grey silty clay encountered at BH20-MOR-01 to BH20-MOR-03.
- Interpreted glacial till deposits comprising of hard silty clays with varying proportions of sands and gravels, with presence of cobbles and boulders to termination depth.
- Strong, massive conglomerate bedrock with discrete sandstone and mudstone facies observed at BH20-MOR-02 to BH20-MOR-06.

A visual representation of the identified subsurface soil strata and modelled resistivity and seismic sections across the proposed Morice River Crossing is presented in Figure 4 and Figure 5, respectively.

5.1 Geophysical Results

Figure 5 presents the combined results of the ERT and SRT surveys along with an interpreted bedrock interface. Electrical resistivity and seismic p-wave (primary or compressional wave) velocity variations are illustrated using colour contour maps in units of ohm-metres and metres per second, where increasing resistivity and velocity are indicated by a gradation from cool colours (blues and greens) to warm colours (yellows and reds). The sections are displayed in terms of elevations above mean sea level and horizontal distance in UTM coordinates (NAD83, Zone 10N). An inset map displays the location of the geophysical lines, the CGL centreline Rev G, and geotechnical boreholes BH20-MOR-01 to BH20-MOR-06. Simplified results of the geotechnical boreholes logs have been overlaid on the cross sections to facilitate a correlation of resistivity and seismic data to lithology.

In general, coarse-grained soil (gravel and sand) exhibits higher resistivity compared to fine-grained soil (e.g., silt and clay). Similarly, coarse-grained rock (conglomerate) exhibits higher resistivity compared to fine-grained rock (mudstone and siltstone).

The seismic velocity of a material is predominately dependent upon the density, which means loose or less consolidated materials like till and overburden have a strong velocity contrast to dense material like competent bedrock. Material interfaces are generally interpreted to occur at steep gradients of velocity increases with depth.

There is not always a detectable density contrast between materials of different compositions. Similarly, resistivity is not uniquely indicative of grain size and soil type and there are overlaps in the expected ranges of many soil and rock types. Contrasts and structures that may be apparent in seismic velocity data may not be apparent in resistivity, and vice versa. For this reason, collection and analysis of coincident ERT and SRT data provides a more complete geophysical understanding of subsurface structure than one method alone would.

On Figure 5, the resistivity profile directly beneath the Morice river and at either bank consists of very high resistivity material (150 to 1000 Ohm-m) in the upper 15 to 30 metres of the subsurface which generally thins further away from the river. This area of elevated resistivity is attributed to coarse-grained river deposited soil consisting of sand, gravel, boulders, and cobbles. Very fresh water without the presence of dissolved ions may also contribute to higher resistivity values in the river vicinity. The upper higher resistivity layer is underlain by relatively lower resistivity values which are attributed to an increased proportion of fine-grained sediments (silt, clay and some sand) at greater depths. The borehole closest to the river, BH20-MOR-03, shows a lithological correlation between the higher resistivity upper layer of sand and gravels and the lower resistivity silty clay layer beneath. The higher resistivity layer becomes thinner away from the river to the west near BH20-MOR-04 and up onto the western terrace near BH20-MOR-05 and BH20-MOR-06. To the east of the river, the higher resistivity layer 5 to 10 m thick on the eastern terrace near BH20-MOR-01 which is attributed to fine-grained soil.

The west side of the resistivity profile generally shows a weak correlation between resistivity values and the top of bedrock. Seismic and borehole data are used for primary guidance for the interpreted top of bedrock west of the river. Beneath the river and east of the river, there is a transition from lower to higher resistivity at depth coincident with the interpreted bedrock surface. This resistivity transition correlates with top of bedrock in BH20-MOR-02.

The velocity profile on the west side of the river contains a sharp increase in velocity with depth (2100 to 4500 m/s) that is attributed to the transition from soil to bedrock. The bedrock interpretation approximately follows the 3000m/s seismic velocity contour. This sharp increase becomes more gradational toward the Morice River as a denser, and therefore faster, intermediate overburden layer is present in the 2100 to 2800 m/s range. Seismic data on the west side of the river strongly correlate with borehole data and provide primary guidance for the top of bedrock interpretation.

The velocity profile on the east side of the river shows top of bedrock at the deepest limits of the seismic refraction survey. Higher velocity values indicative of bedrock were only detected on the farthest seismic source offsets and therefore only captured on the bottom edge of the velocity model. Overburden velocities in the range of 2100 to 2900 m/s are present between the river and east of BH20-MOR-02, which suggests very dense and compact soil. Further upslope near BH20-MOR-01 overburden velocities are generally lower suggesting less dense and less consolidated soil in this area. Borehole data east of the river indicates a mix of sand, silt, and gravels. It is likely that the variability of overburden velocity east of the river are related to consolidation of these materials and not the material type.

It is important to note that due to overlapping resistivity and seismic velocity ranges for different soil and rock types, it is not always possible to uniquely identify soil or rock type based solely on resistivity and seismic velocity information. On the west of the river seismic velocity proved to be the distinguishing material property while on the east side of the river resistivity values most strongly correlated with the bedrock interface (due in part to the depth of bedrock being near to or beyond the depth of investigation of the seismic survey). The interpreted sections should therefore be treated as an approximation subject to the limitations of geophysical methods as stated in APPENDIX E. Confidence in the interpreted bedrock surface is greatest at the borehole locations and decreases with distance from the boreholes; beyond the boreholes, a variation in the interpreted geophysical bedrock surface shown on Figure 4 and 5 of ± 2 m should be assumed. Should additional verification data be made available through future work, Golder should be requested to re-evaluate the interpretations, conclusions, and recommendations of this report, and to provide amendments, as required.

5.2 Inferred Glacial Outwash Deposits - Sands and Gravels

Inferred glacial outwash deposits, generally consisting of sands and gravel with varying fines content from silty to trace non-plastic fines were encountered at boreholes BH20-MOR-01 to BH20-MOR-05 from surface (727.85 to 769.52 m geodetic) to 52.12 m depth (763.4 to 701.2 m geodetic).

Recorded uncorrected SPT blow counts ranged from 20 to above 50 blows per 300 mm. This corresponds to a compact to very dense condition, although the presence of gravel can affect the recorded blow count, rendering it unrepresentative of the matrix relative density. Twenty-nine natural water content determinations were conducted on selected samples of the inferred glacial outwash deposits and were found to range from approximately 2 and 18%, with an average natural water content of approximately 8%; however, moisture content determinations in granular soils may not be representative of insitu conditions because of drainage during sampling and transportation.

Ten particle size analyses were conducted on selected samples of the inferred glacial outwash deposits and the results are summarized in Table 4 and are presented graphically in APPENDIX B. Note that the maximum particle size determined from the laboratory tests is limited by the dimensions of the sampling equipment (127 mm in the case of sonic samples and 51 mm for SPT samples). Cobbles up to 120 mm in diameter were observed in collected drill core at boreholes BH20-MOR-01 to BH20-MOR-05. Based on drilling action, an inferred cobble and boulder zone was encountered at BH20-MOR-02 from 36.9 to 39.9 m.

Three organic content determinations were conducted on selected samples of the inferred glacial outwash deposits and were found to range from approximately 0.5 to 1.3%, with an average organic content of 0.8% of the sample's oven dried mass. One specific gravity determination was conducted on a sample of the inferred glacial outwash deposits from BH20-MOR-02. A specific gravity of 2.73 was determined.

Borehole ID	Sample No.	De	epth	Natural Moisture	Gravel	Sand	Fines	Silt	Clay
		Top (m)	Bottom (m)	Content (%)	%	%	%	%	%
BH20-MOR-01	16	14.33	14.48	2.6	54	31	15		
BH20-MOR-01	26	25.91	26.06	8.8	35	49	16		
BH20-MOR-01	39	53.34	53.49		31	48	21		
BH20-MOR-01	40	56.08	56.24		57	38	5		
BH20-MOR-02	8	5.64	5.79	6.7	44	54	2		
BH20-MOR-02	38	36.58	36.73	18.2	0	48	52	50	2
BH20-MOR-03	5	4.72	4.88	2.9	71	28	1		
BH20-MOR-03	19	13.87	14.02	5.7	60	36	4		
BH20-MOR-04	6	4.88	5.03	5.7	53	47	0		
BH20-MOR-05	3	2.44	2.59	10.7	27	50	23		

Table 4: Geotechnical Testing Summary – Inferred Glacial Outwash Sand and Gravel Deposits

Two petrographic examinations of the gravel fraction from the inferred glacial outwash deposits at BH20-MOR-01 and BH20-MOR-02 were conducted in Golder's Burnaby Laboratory. A summary of the petrographic descriptions - avels is provided in Table 5 and shown in detail in APPENDIX C.

Table 5: Petrographic Examination Results - Inferred Glacial Outwash Gravels	
--	--

		Petrographic Descrip <i>t</i> ion (% By Mass)									
Borehole ID	Depth (m)	Intermediate Volcanic Mafic Volcanic		Felsic Porphyritic Volcanic	Plutonic Rock (medium grained)	Plutonic Rock (fine to very five grained)	Chert/Quartzite	Sandstone			
BH20-MOR-01	22.25 – 22.40	24.8	28.0	9.6	14.7	3.7	19.2				
BH20-MOR-03	4.72 – 4.88	24.0	27.7	24.7	16.8	5.3	0.8	0.7			

5.3 Inferred Low Energy Glacial Outwash Deposits - Silt to Silty Clay

Intermixed with the glacial outwash sand and gravel deposits, were discrete layers of silt to silty clay. It is inferred that these deposits were a result of lower depositional energy environments such as back channels and deep pools along the glacial outwash plain. The inferred low energy glacial outwash deposits were encountered in boreholes BH20-MOR-01 to BH20-MOR-05 at depths of 3.7 to 6.7 mbgs, 3.7 to 4.0 mbgs, 15.4 to 22.3 mbgs, 7.0 to 10.4 mbgs, and 6.1 to 9.8 mbgs, respectively.

Recorded uncorrected SPT blow counts in these deposits ranged from 15 to over 50 blows per 300 mm. This corresponds to a very stiff to hard consistency. Nine natural water content determinations were conducted on selected samples of the inferred low energy glacial outwash deposits and were found to range from approximately 8 to 24%, with an average natural water content of approximately 16%.

Three Atterberg Limit determinations and one particle size analysis were conducted on selected samples of the inferred low energy glacial outwash deposits and the results are summarized in Table 6 and are presented graphically in APPENDIX B.

Two organic content determinations were conducted on selected samples of the inferred low energy glacial outwash deposits and were found to range from approximately 1.3 to 7.2%, with an average organic content of 4.3% of the sample's oven dried mass. One specific gravity determination was conducted on a sample of the inferred low energy glacial outwash deposits from BH20-MOR-05. A specific gravity of 2.73 was determined.

	Sample	De	Depth		Depth		Plasticity (PL	Plasticity (Pl	Natural Mo Content	Grav	San	Fines
Borehole ID	No.	Top (m)	Bottom (m)	quid Limit (LL)	city Limit PL)	city Index (Pl)	Natural Moisture Content (%)	Gravel (%)	Sand (%)	%) se		
BH20-MOR-01	5	4.27	4.42	27	20	7	8.9					
BH20-MOR-03	8	6.55	6.71				25.6	0	0	100		
BH20-MOR-03	23	17.98	18.29	NP	NP	NP	20.0					
BH20-MOR-05	11	8.53	8.69	29	13	16	10.6					

Table 6: Geotechnical Testing Summary – Inferred Low Energy Glacial Outwash Deposits

*NP – Non-Plastic Result

5.4 Inferred Glaciolacustrine Deposits – Brown to Maroon Silt to Silty Clay

Intermixed with the glacial outwash sand and gravel deposits, were discrete layers of inferred glaciolacustrine deposits characterised by distinctly brown to maroon varved silt to medium plasticity silty clay. The inferred glaciolacustrine deposits were encountered in boreholes BH20-MOR-01 to BH20-MOR-03 at depths of 31.4 to 48.8 mbgs, 8.0 to 25.3 mbgs, and 5.9 to 8.5 mbgs, respectively.

Recorded uncorrected SPT blow counts in these deposits ranged from 30 to over 50 blows per 300 mm. This corresponds to a very stiff to hard consistency. No data was recorded at BH20-MOR-01 as the inferred glaciolacustrine unit was encountered at a greater depth than the available SPT tooling stored onsite. Based on drilling observations at BH20-MOR-01, a very dense relative density was inferred. Thirteen natural water content determinations were conducted on selected samples of the inferred glaciolacustrine samples, and were found to range from approximately 21% to 27%, with an average natural moisture content of approximately 24%

Six particle size analyses and one Atterberg Limit determination were conducted on selected samples of the inferred glaciolacustrine deposits and the results are summarized in Table 7 and are presented graphically in APPENDIX B.

Two organic content determinations were conducted on samples of the inferred glaciolacustrine deposits from BH20-MOR-02. An average organic matter of 1.4% of the sample's oven dried mass was determined. One specific gravity determination was conducted on a sample of the inferred glaciolacustrine deposits from BH20-MOR-02. A specific gravity of 2.75 was determined.

	C Sample		Depth		Depth		Plasticity (PL)	Plastic	Natural Mo Contect	Gra	Sand	Fines	Si	Cla
Borehole ID	No.	Top (m)	Bottom (m)	Liquid Limit (LL)	l⊘ity Limit (PL)	city Index (Pl)	Natural Moissure Content (%)	Gravel (%)	d (%)	(%) s	Silt (%)	Clay (%)		
BH20-MOR-01	32	35.05	35.20				26.3	0	0	100	84	16		
BH20-MOR-01	34	40.84	41.00				26.3	0	0	100	86	14		
BH20-MOR-02	12	8.53	8.69				20.9	0	1	99	75	24		
BH20-MOR-02	23	17.68	17.83				23.0	0	0	100	85	15		
BH20-MOR-02	27	23.16	23.32				27.2	0	0	100	85	15		
BH20-MOR-03	8	6.55	6.71	35	20	15	25.6	0	0	100	76	24		

Table 7: Geotechnical Testing Summary - Inferred Glaciolacustrine Deposits

5.5 Inferred Glacial Till Deposits – Silty Clayey Sand to Silty Clay

Underlying the glacial outwash deposits and immediately overlying the bedrock, were inferred glacial till deposits characterised by broadly graded deposits comprising of silty sand, clayey sand, silt, clayey silt, and silty clay of low to medium plasticity with varying sand and gravel content. The inferred glacial till deposits were encountered in boreholes BH20-MOR-01 to BH20-MOR-06 at depths of 61.6 to 68.6 mbgs, 43.6 to 50.0 mbgs, 22.3 to 26.1 mbgs, 10.4 to 14.3 mbgs, 9.8 to 19.2 mbgs, and 0 to 1.7 mbgs, respectively.

Recorded uncorrected SPT blow counts in these deposits were above 50 blows per 300 mm. This corresponds to a hard consistency, although the presence of gravel can affect the recorded blow count, rendering it unrepresentative of the relative density. No data was recorded at BH20-MOR-01 as the inferred glacial till unit was encountered at a greater depth than the available SPT tooling stored onsite. Based on drilling observations at BH20-MOR-01, a very dense relative density was inferred. Thirteen natural water content determinations were conducted on selected samples of the inferred glacial till samples and were found to range from approximately 7 to 22%, with an average natural water content of approximately 12%.

Five particle size analyses and five Atterberg Limit determinations were conducted on selected samples of the inferred glacial till deposits and the results are summarized in Table 8 and are presented graphically in APPENDIX B. Note that the maximum particle size determined form the laboratory tests is limited by the dimensions of the sampling equipment (127 mm in the case of sonic samples and 51 mm for SPT samples).

Two organic content determinations were conducted on selected samples of the inferred glacial till deposits and were found to range from approximately 2.2 to 2.4%, with an average organic content of 2.3% of the sample's oven dried mass.

Borehole ID	Sample No.	Depth		Plasticity (PL) Liquid L (LL)	Plastic (Plastic	Natural Cont	Grav	Sar	Fines	Sil	Cla
		Top (m)	Bottom (m)	Liquid Limit (LL)	city Limit (PL)	Plasticity Index (PI)	Natural Moisture Content %)	Gravel (%)	Sand (%)	(%) St	Silt (%)	Clay (%)
BH20-MOR-01	42	63.09	63.25				7.5	20	50	30		
BH20-MOR-02	46	48.16	48.31	41	19	22	14.9	34	20	46	26	20
BH20-MOR-03	27	23.47	23.62				15.3	27	20	53	44	9
BH20-MOR-04	13	8.53	8.69				20.1	25	53	22	16	6
BH20-MOR-04	17	12.34	12.50	33	16	17	21.7	2	46	52	33	19
BH20-MOR-05	17	12.98	13.11	25	12	13	8.7					
BH20-MOR-05	22	17.37	17.53	26	16	10	12.1					
BH20-MOR-06	1	0.61	0.76	20	16	4	17.4					

Table 8: Geotechnical Testing Summary - Inferred Glacial Till Deposits

Cobbles were encountered during drilling. Although not encountered during the investigation, because of the depositional environment, the potential for boulders to be encountered within the glacial deposits should be anticipated.

5.6 Bedrock

Bedrock was encountered at boreholes BH20-MOR-02 to BH20-MOR-06 at depths of 50.0 mbgs (694.8 m geodetic), 26.1 mbgs (701.7 m geodetic), 14.3 mbgs (728.8 m geodetic), 19.2 mbgs (750.3 m geodetic), and 1.7 mbgs (776 m geodetic), respectively. The interpreted bedrock surface presented on Figure 4 and Figure 5 has been inferred based on interpolation between available borehole data and interpretation of collected geophysics data.

Detailed descriptions of the bedrock conditions encountered are presented in the record of Sonic Hole and Drill Hole sheets included in APPENDIX A. Further discussions of the bedrock conditions are discussed in the following subsections.

5.6.1 Geophysical Bedrock Interpretation

As mentioned above, confidence in the interpreted bedrock surface is greatest at the borehole locations and decreases with distance from the boreholes; beyond the boreholes, a variation in the interpreted geophysical bedrock surface shown on Figure 4 and 5 of ±2 m should be assumed. The interpreted bedrock surface on the west end of the crossing is within 1 to 3 metres below ground surface (mbgs) and begins to slope on a relatively consistent angle between BH20-MOR-06 and BH20-MOR-05, and beyond, to the west side of the river. Topographic relief between BH20-MOR-05 and BH20-MOR-04 is the primary reason that bedrock depths fluctuate between 16 and 35 mbgs, while the inferred bedrock surface slope remains fairly consistent. The bedrock surface slopes more steeply between BH20-MOR-04 and BH20-MOR-03 to a maximum inferred depth of 46 mbgs beneath the Morice River. East from the river, the bedrock depth remains between 40 and 48 mbgs until a sharp transition is identified between BH20-MOR-02 and BH20-MOR-01 where the bedrock profile has not been interpreted. It is assumed that this is the location of a steeply dipping bedrock was also not encountered down to elevation 699.57 m in BH20-MOR-01.

5.6.2 Lithology

The bedrock encountered at boreholes BH20-MOR-02 to BH20-MOR-06 generally comprised fresh to weathered, medium strong to very strong conglomerate to coarse conglomeratic sandstone ranging from grey to green grey in colour with volcanic clasts. Sandstone was encountered below the inferred glacial till at BH20-MOR-02 and fresh to highly weathered claystone was encountered at BH20-MOR-03. Some red-grey staining of the conglomerate bedrock was observed at BH20-MOR-02 and BH20-MOR-04 at depths of 83.41 and 69.72 mbgs, respectively.

Petrographic examination conducted on two HQ core samples from boreholes BH20-MOR-04 and BH20-MOR-03 defined the rock as conglomerate and conglomeratic sandstone, respectively. The sandstone is defined as coarse grained with some coarse conglomeratic clasts with pebbles up to about 12 mm in diameter in a siliceous cement/matrix. Clasts are primarily composed of slightly to significantly altered volcanic rock. While pebbles in the coarse-grained conglomerate, in BH20-MOR-03, are primarily composed of slightly to significantly altered volcanic rocks up to 55 mm in diameter. The conglomerate bedrock is also composed of well-rounded gravel particles and sand-sized grains in a siliceous cement/matrix. Mohs hardness for both HQ core samples is estimated to be between 5.5 to 6.0.

5.6.3 Rock Quality Designation (RQD)

Rock quality designation (RQD) of the conglomerate and sandstone units ranged from 0 - 100%. Excluding heavily broken core zones where calculated RQD is less than 25%, the RQD for the conglomerate averaged 94.5%, respectively. Heavily broken core zones, where calculated RQD was less than 25%, were observed at the following depth ranges:

- BH20-MOR-02: from 52.4 to 53.92 mbgs (16% RQD), from 53.92 to 55.44 mbgs (13% RQD), and from 55.44 to 56.96 mbgs (0% RQD)
- BH20-MOR-03: from 33.83 to 35.05 mbgs (0% RQD)

It should be noted that the drilling subcontractor noted water circulation was lost to formation at 25.6 and 56.7 mbgs at BH20-MOR-04. This is likely a result of highly fractured bedrock zones not captured in collected drill core records.

Detailed descriptions of the collected RQD results are presented in the Record of Drill Hole sheets in APPENDIX B.

5.6.4 Rock Strength

Rock strengths were estimated in the Golder Burnaby Laboratory by UCS testing of collected rock core and in the Golder Terrace Laboratory by geotechnical examination and limited Point Load Test (PLT) testing of the collected rock core.

The unconfined compressive strength tests conducted on conglomerate samples yielded unconfined compressive strengths between 28.1 to 75.6 MPa. This corresponds to medium to strong rock designation. UCS test results are summarized in Table 9 and presented in detail in APPENDIX *C*.

Borehole ID	Depth (m)	Stress (MPa)	Lithology
BH20-MOR-02	60.82 - 61.08	28.1	Conglomerate
BH20-MOR-02	36.57 – 36.85	75.6	Conglomerate
BH20-MOR-04	20.63 – 20.75	49.8 ^{*1}	Conglomerate
BH20-MOR-05	30.96 – 31.14	N/A*2	Conglomerate
BH20-MOR-05	33.37 – 33.63	39.7	Conglomerate

Table 9: Geotechnical Testing Summary - Unconfined Compressive Strength

^{*1}Does not conform to ASTM length:diameter ratios as per Section 3.3.3

^{*2}Sample broke during sample preparation.

Point load testing was completed to help evaluate rock strength indices within the collected rock core samples. Axial and diametral tests were attempted at specified depths along the collected rock core. Point Load Strength Index values (Is₅₀) were calculated in accordance with ASTM specification D5731 and are summarized in Table 10. Several invalid test results were observed and excluded subsequently from the average results provided. It should be noted that PLT data is generally variable in nature and requires a large data set or correlated UCS rock samples to provide confidence in the PLT values. Detailed laboratory tests results are presented in APPENDIX C.

Lithology	Test	Is(50) Range (MPa)	Mean I _{S(50)} (MPa)	Number of Tests	Standard Deviation
Conglomerate	Axial	0.14 – 6.94	2.19	73	1.3
	Diametral	0.16 - 6.42	2.49	76	1.54
Sandstone	Axial	0.87 – 2.35	1.62	3	1.04
	Diametral	0.66 – 2.57	1.56	4	0.94

Table 10: Geotechnical Testing Summary – Point Load Index (Is₅₀)

5.6.5 Rock Abrasivity

Cerchar Abrasivity test results were cross-referenced against the Cerchar Abrasiveness Index described in Table 2 and the test results are summarized in Table 11. Cerchar abrasiveness testing resulted in a classification of low to medium abrasiveness and a CAI between 0.69 to 1.21. Detailed laboratory test results are presented in APPENDIX C.

Table 11: Geotechnical Testing Summary - Cerchar Abrasivity

Borehole ID	Depth (m)	Lithology	CA!s (smooth cut surface)	CAI (natural surface)	Abrasiveness Classification
BH20-MOR-02	60.82 - 61.08	Conglomerate	0.31	0.79	Low abrasiveness
BH20-MOR-02	67.86 – 68.10	Conglomerate	0.21	0.69	Low Abrasiveness
BH20-MOR-02	80.16 - 80.40	Conglomerate	0.24	0.72	Low Abrasiveness
BH20-MOR-03	36.57 – 36.85	Conglomerate	0.62	1.09	Medium Abrasiveness
BH20-MOR-05	33.37 – 33.63	Conglomerate	0.74	1.31	Medium Abrasiveness
BH20-MOR-05	55.94 – 56.12	Sandstone	0.57	1.04	Medium Abrasiveness

5.6.6 Rock Dry Density

Select rock core samples from boreholes BH20-MOR-05 and BH20-MOR-06 were analyzed to determine sample dry density. Dry densities of 1976, 2067, and 1998 kg/m³ were identified for conglomerate, sandstone, and mudstone samples, respectively.

5.6.7Acid Rock Drainage and Metal Leaching Geochemical Testing5.6.7.1Acid Rock Drainage (ARD) Potential

The results of the acid base accounting (ABA) testing are presented in Table 1 in APPENDIX F and in the attached certificate of analysis (COA) in APPENDIX F.

Paste pHs of the samples ranged from 8.8 to 9.05, indicating alkaline initial conditions in the crushed rock samples.

Assessment of the ARD potential of the five samples based on both the bulk NPR and caNPR resulted in classification of the samples as *not potentially acidic drainage generating* (non-PAG). The ABA results indicated the sulphide sulphur concentrations were at or below the laboratory reporting limit of 0.01% for all five samples tested. The very low sulphide sulphur concentrations corroborate the non-PAG classification of the samples based on NPR.

A summary of the results is presented in Table 12.

	_		-						
Location	Paste pH	Total Inorganic Carbon	Total Sulphur	Sulphide Sulphur	АР	Modified NP	Carbonate NP		
Unit		%	% Equivalent kg CaCO ₃ /tonne						
Location	-		Min – Max (Average)						
BH20-MOR-	8.8 – 9.09	0.01 - 0.12	0.008 – 0.024	<0.01 - 0.01	<0.3	13 – 28.6	0.8 - 10 (5)		
03 / 05	(8.96)	(0.06)	(0.0128)	(0.01)		(19.48)			

Table 12: Summary of Acid Base Accounting Results

5.6.7.2 Metal Leaching (ML) Potential

Total Metals

The results of the total metals analyses are presented in Table 2 in APPENDIX F and the attached certificate of analysis (COA) in APPENDIX F.

Total metal concentrations measured in the rock core samples were compared with the "normal trace element concentrations" of Price (1997), with a focus on metals of typical environmental concern such as arsenic, cadmium and copper.

Trace element concentrations in the samples were generally within the range of "normal" concentrations for basaltic rock. Only bismuth exceeded 5x normal concentrations outlined in Price (1997) in all samples. Bismuth exceeded the 10x normal concentration in only one sample.

Shake Flask Extraction

The results of the SFE testing are provided in Table 3 in APPENDIX F and the attached certificate of analysis (COA) in APPENDIX F.

SFE testing provided concentrations of chemical parameters in leachates generated by contact between the rock sample and de-ionized water. The SFE results were compared to current approved and working British Columbia Water Quality Guidelines (BC WQG) for the protection of freshwater aquatic life. This comparison is conducted to identify potential geochemical parameters of concern present in the rock that may have the potential to affect contact water quality. The chemistry of the SFE leachates is not considered to be a simulation of actual anticipated surface water or groundwater quality resulting from contact between broken or crushed rock and site drainage. Actual water quality will depend on several factors including rock compositional variation, site hydrology, and rates of geochemical reactions.

Aluminum, cadmium, copper, iron, mercury and selenium were the sole parameters analyzed in the SFE leachates that were observed to exceed applicable water quality guidelines.

- Aluminum concentrations in SFE leachates ranged between 0.195 mg/L to 1.18 mg/L and exceeded the applicable WQG of 0.05 mg/L in all samples.
- Cadmium concentrations in SFE leachates ranged from 0.000003 mg/L to 0.000024 mg/L, with one sample exceeding the applicable WQG, which is a calculated guideline based on hardness.
- Copper concentrations in SFE leachates were observed to exceed the applicable WQG of 0.002 mg/L in one sample. Concentrations of copper ranged between <0.0002 mg/L to 0.0021 mg/L. One sample exceeded the 0.002 mg/L WQG.</p>
- Iron concentrations in SFE leachates were observed to exceed the applicable WQG of 0.35 mg/L in one sample. Concentrations of iron ranged between 0.052 mg/L to 0.354 mg/L
- Mercury concentrations in SFE leachates were reported at 0.02 mg/L in two samples. It should be noted that mercury concentrations in all samples were at the laboratory method detection limit. In the analyses, the detection limit for mercury was higher than the applicable water quality guideline. Further, the applicable WQG guideline for mercury was developed to assess the methyl mercury component. Analysis of methyl mercury was not carried out on the SFE leachates, therefore, it was not possible to assess potential exceedances of the WQG guideline for mercury.
- Selenium concentrations in SFE leachates were observed to exceed the applicable WQG of 0.002 mg/L in one sample. Selenium concentrations ranged between 0.00017 mg/L to 0.003 mg/L.

No exceedances of applicable guidelines were identified for the other parameters included in the leachate analyses.

5.7 Groundwater Conditions

It was not feasible to record groundwater or seepage during drilling; however, the natural moisture content measurements on samples in the laboratory suggest that the fine-grained deposits likely are saturated. Moisture content determinations of samples of the cleaner granular soils are unreliable, and could reflect water injected as part of the drilling process. Seasonal fluctuations in groundwater levels should be expected in response to sustained periods of seasonal wet weather, snow melt, or other weather events. Perched water should be anticipated above the fine-grained deposits, and artesian conditions are possible within confined granular deposits at depth, although no evidence of this was observed during drilling.

5.7.1 Bathymetric Survey

A river-bottom bathymetric survey was conducted along the survey lines shown on the site plan (Figure 2). Data was collected at half-second intervals and smoothed during post-processing to remove any outliers. Strong river currents limited accessibility on the river to the lines shown. Bathymetry results were paired with overlapping and surrounding LiDAR data from the island in the middle of the river and the riverbanks to produce a single contoured dataset of the river bottom elevation. This contoured surface is presented in Figure 6 and includes an elevation profile extracted along the proposed Rev G centreline.

28 May 2021

6.0 CLOSURE

We trust the foregoing is sufficient for your preliminary design requirements and look forward to receiving comments and refining the above geotechnical comments and recommendations as design progresses.

Should you have any questions or require clarification on the contents of this report, please contact the undersigned.

Golder and the G logo are trademarks of Golder Associates Corporation

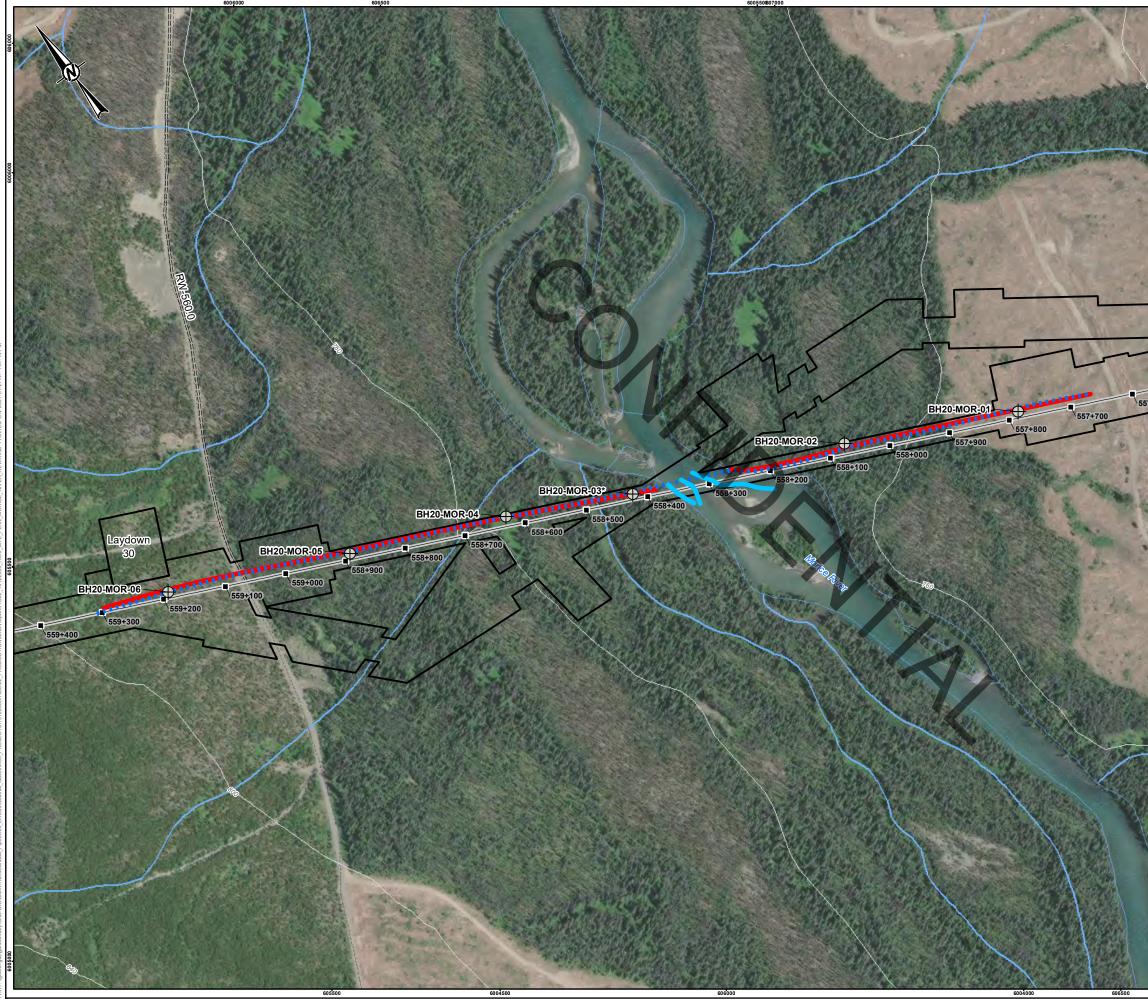
https://golderassociates.sharepoint.com/sites/108860/project files/5 technical work/7000 - morice river crossing/geotech/reporting/rev 1/submit/cgl4703-galv-gt-rp-0035 morice river crossing_rev 1.docx

REFERENCES

- ASTM (ASTM International). 2018. Standard Test Methods for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. D1586/D1586M-18. ASTM International, West Conshohocken, PA. DOI: 10.1520/D1586_D1586-18. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2010. Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. D2216-10. ASTM International, West Conshohocken, PA. DOI: 10.1520/D2216-10. accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. D4318-17E1. ASTM International, West Conshohocken, PA. DOI: 10.1520/D4318-17E01. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2017. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. D7928-17. ASTM International, West Conshohocken, PA. DOI: 10.1520/D7928-17. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2017. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. D6913/D6913M-17. ASTM International, West Conshohocken, PA. DOI: 10.1520/D691317. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2011. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). D2487-17e1. ASTM International, West Conshohocken, PA. DOI: 10.1520/D2487-17E01. [accessed 15 January 2021], www.astm.org.
- ASTM (ASTM International). 2017. Standard Practice for Description and Identification of Soils (Visual-Manual Procedures). D2488-17e1. ASTM International, West Conshohocken, PA. DOI: 10.1520/D2488-17. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2014. Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. D7012-14e1. ASTM International, West Conshohocken, PA. DOI: 10.1520/D7012-14E01. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2010. Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method (Withdrawn 2019). D7625-10. ASTM International, West Conshohocken, PA. DOI: 10.1520/D7625-10. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2016. Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications. D5731-16. ASTM International, West Conshohocken, PA. DOI: 10.1520/D5731-16. [accessed 15 January 2021]. www.astm.org.
- ASTM (ASTM International). 2019. Standard Guide for Petrographic Examination of Aggregates for Concrete. C295/295M-19. ASTM International, West Conshohocken, PA. DOI: 10.1520/C0295_C0295M-19. [accessed 15 January 2021]. www.astm.org.
- Canadian Geotechnical Society. 2017. Canadian Foundation Engineering Manual. 4th Ed. Errata, Canadian Geotechnical Society. BiTech Publishers Ltd.

- Cui, Y., Miller, D., Schiarizza, T., Diakow, L.J., 2017. Bristih Columbia Digital Geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, Brish Coumbia Geological Survey Open File 2017-8, 9P. Data Version 2019-12-19.
- iMapBC, Government of British Columbia, DataBC, GeoBC accessed 10 January 2021 at https://maps.gov.bc.ca/ess/hm/imap4m/
- Tipper, H.W. 1994. Preliminary Interpretation of Glacial Features and Quaternary Information From the Smithers Map Area (93L), British Columbia. Geological Survey of Canada.
- Tipper, H.W. and Richards, T.A. 1976. Surficial Geology of Smithers Area. Geological Survey of Canada.
- Worley Parsons Calgary, 2019. Transcanada Coastal Gaslink Project Terrain Mapping Update Spread 7. CGLDocument No. CGL4703-WPC-G-MP-065_0

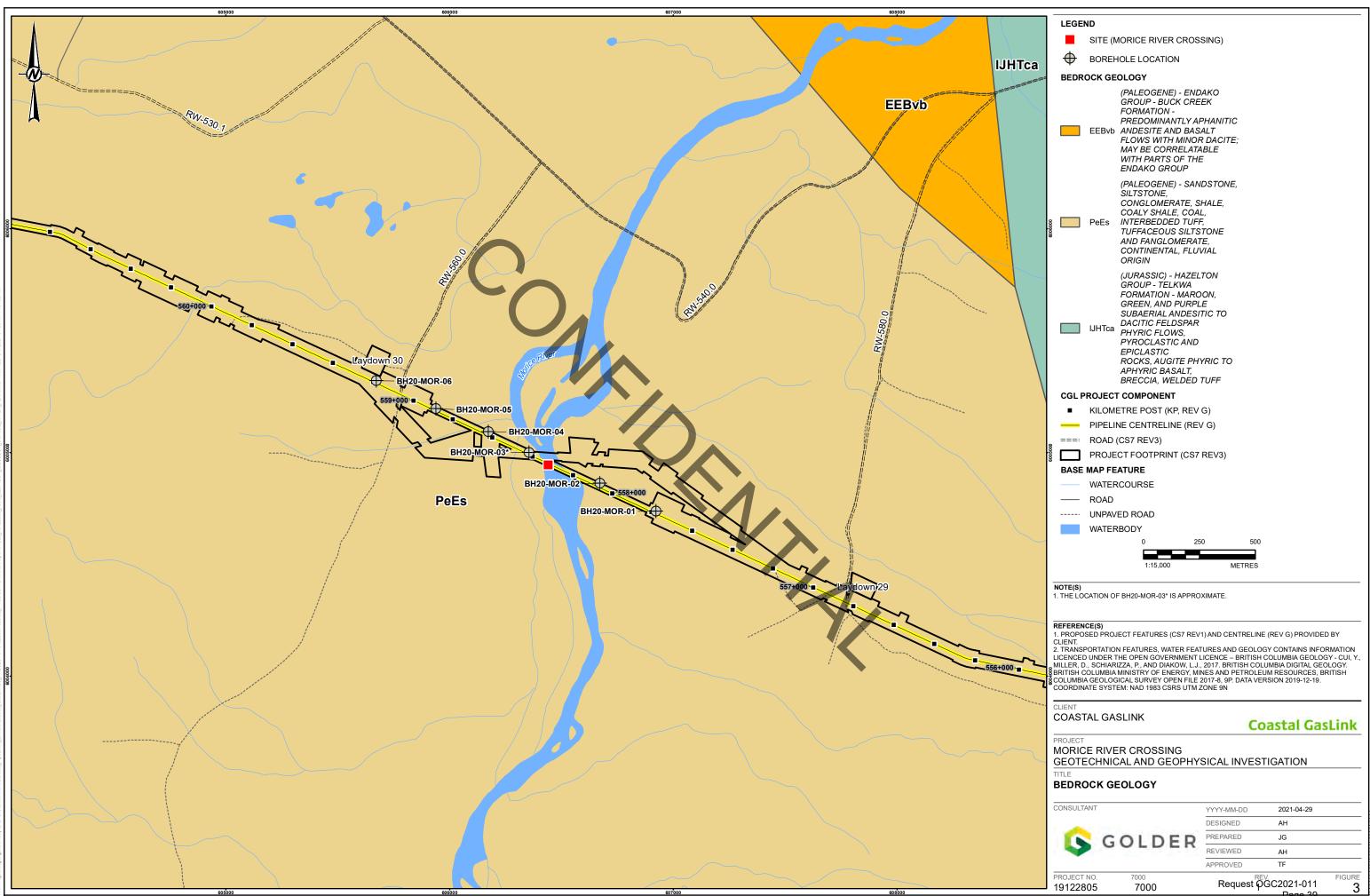
9. Tra GL4703-

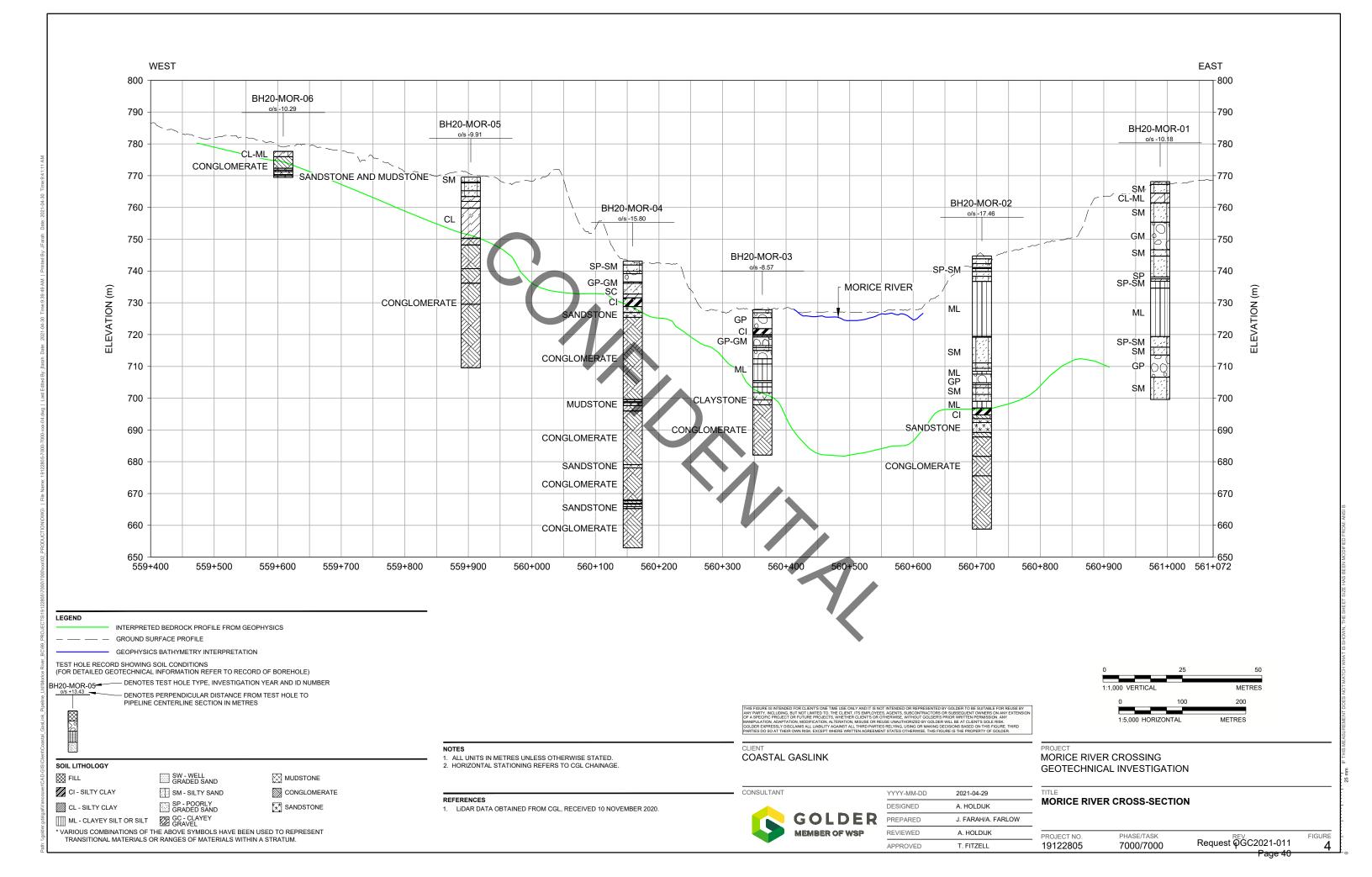


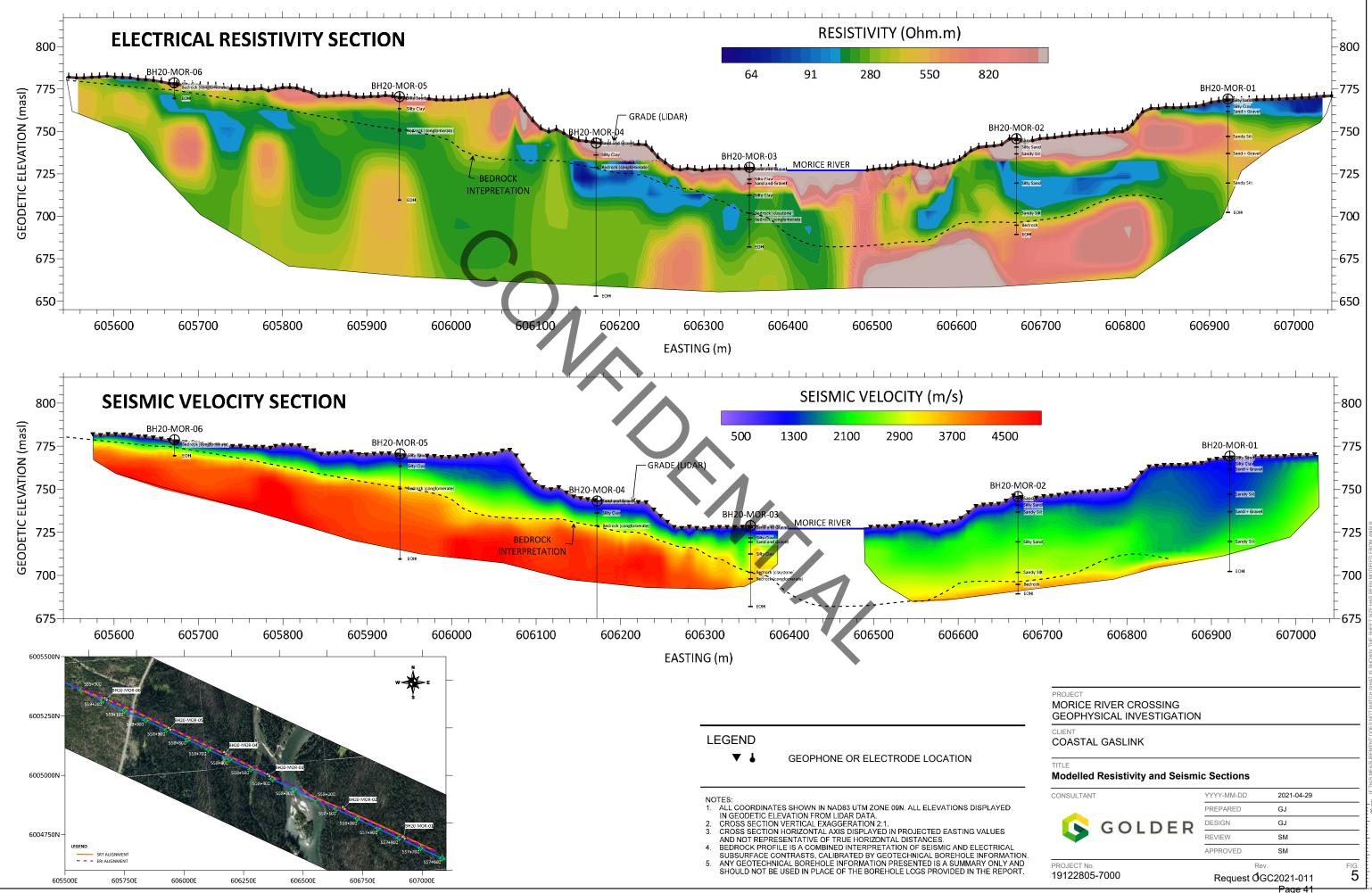
FIGURES

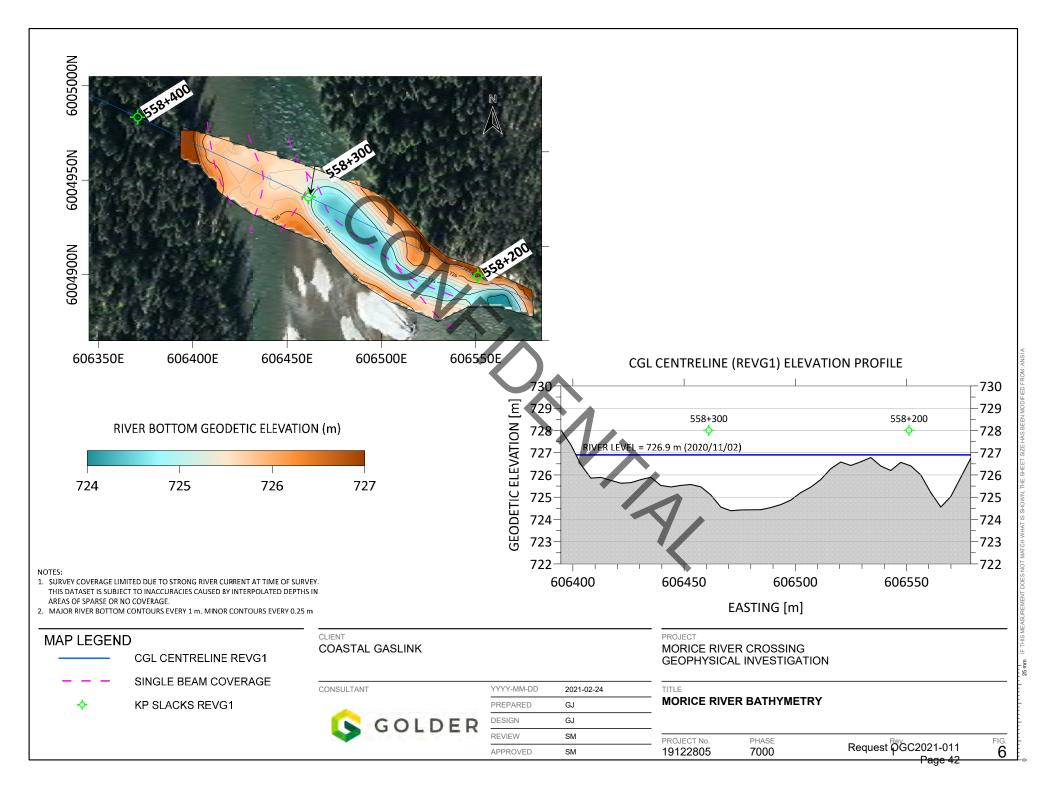
Request OGC2021-011 Page 36

SITE (MORICE RIVER CROSSING) COL PROJECT COMPONENT • KILOMETRE POST (KP, REV G) = PROJECT FOOTPRINT (CS7 REV3) BASE MAP FEATURE CONTOUR (m) • WATERCOURSE • WATERCOURSE • WATERCOURSE • WOODED AREA • PARK / PROTECTED AREA • PARK / PROTECTED AREA • PARK / PROTECTED AREA • Control (m) • WOODED AREA • PARK / PROTECTED AREA • Control (m) • WOODED AREA • PARK / PROTECTED AREA • Control (m) • WOODED AREA • PROJECT NOT CONTROL • CONTROL ENVERT CROSSING GEOLDER • PROJECT INCOL CONTROL • CONSULTANT • VYY JAMA DD 2021-04-29 • CONSULTANT • VYY J		LEGEND		
KILOMETRE POST (KP, REV G) PIPELINE CENTRELINE (REV G) PROJECT FOOTPRINT (CS7 REV3) BASE MAP FEATURE CONTOUR (m) WATERBODY WOODED AREA PARK / PROTECTED AREA PARK / PROTECTED AREA	E.	SITE (MORICE RIVER CROSSING)		
PIPELINE CENTRELINE (REV G) PROJECT FOOTPRINT (CS7 REV3) BASE MAP FEATURE CONTOUR (m) WATERCOURSE WOODED AREA PARK / PROTECTED CONTROL PROTECT NO CONTROL PROTECTION PROTECT NO CONTROL PROTECTION PROTECT NO PROTECT NO CONTROL PROTECTION PROTECT NO CONTROL PROTECTION PROTECT NO PROTECT NO CONTROL PROTECTION PROTECT NO PROTECT NO PROT	~	CGL PROJECT COMPONENT		
REVEALS AND LOSS REV3) PROJECT FOOTPRINT (CS7 REV3) BASE MAP FEATURE CONTOUR (m) WATERCOURSE WATERCOURSE WATERCOURSE PARK / PROTECTED AREA PARK / PROTECTED AREA KEY MAP Proceeding New Alyansh Hazelton Control Rupert Terrace Street Houston Control Rupert Terrace Street Houston Control Rupert Control Rupert Terrace Street Houston Control Rupert Control Rupert Control Rupert Control Rupert Reveal Rupert Control Rupert Ruperts R				
PROJECT FOOTPRINT (CS7 REV3) BASE MAP FEATURE CONTOUR (m) WATERBODY WOODED AREA PARK / PROTECTED AREA PARK / PROTECTED AREA				
BASE MAP FEATURE CONTOUR (m) WATERBODY WOODED AREA PARK / PROTECTED AREA PARK / PROTECTED AREA PARK / PROTECTED AREA PARK / PROTECTED AREA PROVED TEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLEMT COMBULTANT PROVED THE RYSTEM: NAD 1989 BC ENVIRONMENT ALBERS COMMUNE SYSTEM: NAD 1989 BC ENVIRONMENT ALBERS COMMUNE SYSTEM ALBERS COMMUNE SYSTEM:	ſ			
CONTOUR (m) WATERCOURSE WATERBODY WOODED AREA DARK / PROTECTED AREA MARK / PROTECTED AREA WATERBODY WOODED AREA MARK / PROTECTED AREA	(
WATERCOURSE WOODED AREA PARK / PROTECTED AREA WOODED AREA PARK / PROTECTED AREA WOODED AREA PARK / PROTECTED AREA WOULD	~			
WATERBODY WOODED AREA PARK / PROTECTED AREA WOODED AREA PARK / PROTECTED AREA WOODED AREA PARK / PROTECTED AREA We Alyansh Hazelton Granisle Snithers Granisle Snithers Houston Granisle Houston Houston Burns Lake 27 Houston Burns		. ,		
WOODED AREA PARK / PROTECTED AREA KEY MAP PARK / PROTECTED AREA KEY MAP PARK / PROTECTED AREA KEY MAP Prince Rupett Prince Rupettt Prince Rupettt Prince Rupettt Prince Rupettt				
Image: Second State Sta	/			
Image: Second Street	r	6		
Image: New Alyaristic Hazerion Image: Constant of the second of the		TARCH NOTEOTED AREA		
Image: New Alyaristic Hazerion Image: Constant of the second of the	1			
Image: New Alyaristic Hazerion Image: Constant of the second of the		~		
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the		~		
Image: New Alyaristic Hazerion Image: Constant of the second of the	5	2		
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the	7	7		
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the	~	~		
Image: New Alyaristic Hazerion Image: Constant of the second of the				
Image: New Alyaristic Hazerion Image: Constant of the second of the	-			
Image: New Alyaristic Hazerion Image: Constant of the second of the	~			
Image: New Alyaristic Hazerion Image: Constant of the second of the	e.			
Constant GasLink Project No. CONTROL PROJECT NO. CONTROL PROJ	1	KEY MAP New Aivansh Hazel	Francis	
Smithers Prince Rupert STE Houston Burns Lake (27) Store Burns Lake (27) Store Store Burns Lake (27) Store Store Store Burns Lake (27) Store Store Store Burns Lake (27) Store Store Burns Lake (27) Store Store Burns Lake (27) Store	1	- Tiazer		
Image: Terrace of the second of the secon			COLUMBIA	
Prince Rupert 16 37 Kitimat SITE 400+000 Houston Burns Lake Prince Rupert 2 0 2			Granisle	
Burns Lake (27) Burns Lake (27) Southout Southout South	1		Granisle	
Z 0 2 2 0 2 1 PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2 0 2 1 PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2 0 1 1 PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2 0 1 CONTINUES INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE - BRITISH COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT YYY-MM-DD 2021-04-29 DESIGNED FC PROJECT DESIGNED FC MORICE RIVER CROSSING GOULDER 1 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL Request QGC2021-011 FIGURE	7	en e	Granisle	
2 2 2 2 2 2 2 2 2 2 2 2 2 2		Prince Rupert	Granisle Smithers	
2 0 2 1:100,000 KILOMETRE REFERENCE(S) 1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2. CONTAINS INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE – BRITISH COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE YYY'-MM-DD 2021-04-29 DESIGNED OCNSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED FC PROJECT NO. CONTROL REV AH APPROVED TF PROJECT NO. CONTROL REV	NGCL IN R	Prince Rupert 37	Granisle Granisle Houston Burns Lake 27	
2 0 2 1:100,000 KILOMETRE REFERENCE(S) 1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2. CONTAINS INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE – BRITISH COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED FC PROJECT NO. CONTROL REV AH APPROVED TF PROJECT NO. CONTROL REV	J. NOLL MIL #	Prince Rupert 37	Granisle Smithers Houston Burns Lake 27	
2 0 2 1:100,000 KILOMETRE REFERENCE(S) 1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. CONTAINS INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE - BRITISH COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE YYY'-MM-DD CONSULTANT YYY'-MM-DD Q021-04-29 DESIGNED PROJECT NO. ONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED DESIGNED DESIGNED PROVED PROVED PROVED PROJECT NO. CONTROL PROVED PROVED PROJECT NO. CONTROL<		Prince Rupert 37	Granisle Smithers Houston Burns Lake 27	
Introduction of the second state of the sec		Prince Rupert 37 Kitimat 600+000	Granisle Smithers Houston Burns Lake 27	
REFERENCE(6) 1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED REVIEWED AH APPROVED TF PROJECT NO. CONTROL REV FREV PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. FOR PROJECT NO. CONTROL PROJECT NO. <td co<="" th=""><th></th><th>Prince Rupert 16 37 Kitimat 600+000</th><th>Granisle Smithers Houston Burns Lake 27</th></td>	<th></th> <th>Prince Rupert 16 37 Kitimat 600+000</th> <th>Granisle Smithers Houston Burns Lake 27</th>		Prince Rupert 16 37 Kitimat 600+000	Granisle Smithers Houston Burns Lake 27
REFERENCE(6) 1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED CONSULTANT YYY'-MM-DD 2021-04-29 DESIGNED REVIEWED AH APPROVED TF PROJECT NO. CONTROL REV FREV PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. FOR PROJECT NO. CONTROL PROJECT NO. <td co<="" th=""><th></th><th>Prince Rupert 37 Kitimat 600+000</th><th>Granisle Smithers Houston Burns Lake 27</th></td>	<th></th> <th>Prince Rupert 37 Kitimat 600+000</th> <th>Granisle Smithers Houston Burns Lake 27</th>		Prince Rupert 37 Kitimat 600+000	Granisle Smithers Houston Burns Lake 27
1. PROPOSED PROJECT FEATURES (CS7 REV3) AND CENTRELINE (REV G) PROVIDED BY CLIENT. 2. CONTAINS INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE – BRITISH COUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT YYYMM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL REV. REV. REV. PIGURE		25 M	Granisle Smithers Houston Burns Lake 27 400+000	
2. CONTAINS INFORMATION LICENCED UNDER THE OPEN GOVERNMENT LICENCE – BRITISH COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT VYYY-MM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL 19122805 7000 Request OGC2021-011 FIGURE		2 2 10 1100,000	Granisle Smithers Houston Burns Lake 27 400+000	
COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT ALBERS CLIENT COASTAL GASLINK COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT VYYY-MM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL REV Request OGC2021-011 I		2 C C C C C C C C C C C C C	Granisle Smithers Houston Burns Lake 27 400+000	
CLIENT COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT CONSULTANT PROJECT NO. PROJECT NO. PROJECT NO. PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL PROJECT NO. CONTROL Request OGC2021-011 1		2 CONTAINS INFORMATION LICENCED UNDER THE OF	Continue A Granisle Smithers Houston Burns Lake 27 400+000 400+000 Continue A Burns Lake 27 Automatic A Automatic A Burns Lake 27 Automatic A Automatic A Automatic A Burns Lake 27 Automatic A Automatic A Burns Lake 27 Automatic A Automatic A Au	
COASTAL GASLINK PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT CONSULTANT PROJECT NO. CONTROL PROJECT NO. CONTROL 19122805 7000 Request OGC2021-011 1		2 CUINT: 2 CONTAINS INFORMATION LICENCED UNDER THE OF COLUMBIA	Concerning the second s	
PROJECT MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT CONSULTANT PROJECT NO. PROJECT NO. PROJECT NO. PROJECT NO. CONTROL PROJECT NO. PROJECT NO. CONTROL PROJECT NO. PROJECT NO. PROJE		2 0 1:100,000	Concerning the second s	
MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT CONSULTANT PROJECT NO. PROJECT NO. CONTROL PROJECT NO. CONTROL CONTROL CON		2 COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT A CLIENT	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Contraction Burns Lake 27 400+000 Contraction Burns Lake 27 Automatic State Contraction Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Aut	
GEOTECHNICAL AND GEOPHYSICAL INVESTIGATION TITLE KEY PLAN CONSULTANT CONSULTANT VYYY-MM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL REV Request OGC2021-011 I		2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Contraction Burns Lake 27 400+000 Contraction Burns Lake 27 Automatic State Contraction Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Aut	
KEY PLAN CONSULTANT YYYY-MM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF PROJECT NO. CONTROL 19122805 7000		2 0 2 0 1:100,000 1:100,000 REFERENCE (S) 1 PROPOSED PROJECT FEATURES (CS7 REV3) AND COLLENT. 2 0 1:100,000 1:100,000 CONTAINS INFORMATION LICENCED UNDER THE OF COLUMBIA COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT A CONTRINE SYSTEM: NAD 1983 BC ENVIRONMENT A COASTAL GASLINK PROJECT	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Contraction Burns Lake 27 400+000 Contraction Burns Lake 27 Automatic State Contraction Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Burns Lake 27 Automatic State Automatic State Aut	
CONSULTANT YYYY-MM-DD 2021-04-29 DESIGNED FC PREPARED JG REVIEWED AH APPROVED TF 19122805 7000		Prince Rupert Terrace Prince Rupert 37 Kitimat 600+000 25 25 20 1:100,000 REFERENCE(S) 1.PROPOSED PROJECT FEATURES (CS7 REV3) AND CC CLIENT. COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT A COORDINATE SYSTEM: NAD 1983 BC ENVIRONMENT A CLIENT COASTAL GASLINK PROJECT MORICE RIVER CROSSING	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Coastal GasLink	
Designed FC PREPARED JG REVIEWED AH APPROVED TF 19122805 7000 Request OGC2021-011		Prince Rupert Title The Prince Rupert The Rupert T	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Coastal GasLink	
Designed FC PREPARED JG REVIEWED AH APPROVED TF 19122805 7000 Request OGC2021-011	A STATE DIS NOT THE STATE OF TH	Prince Rupert Title The Prince Rupert The Rupert T	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Coastal GasLink	
Image: Section of the section of th		Project MORICE RIVER CROSSING GEOTECHNICAL AND GEOPHYSICAL TITLE KEY PLAN	Granisle mithers Houston Houston Burns Lake 27 400+000 400+000 Constance Burns Lake 27 400+000 Constance Burns Lake 27 Constance Burns Lake 27 Burns Lake 27	
PROJECT NO. CONTROL REV. FIGURE 19122805 7000 Request PGC2021-011 1	A THE DOWN THAT I A VID THE STORE	Terrace Prince Rupert	Granisle Granisle Mithers Houston Houston Burns Lake 27 400+000 400+000 A00+0000 A00	
APPROVED TF PROJECT NO. CONTROL 19122805 7000 Request OGC2021-011 1		Prince Rupert Terrace Prince Rupert Title Prince Rupert Title Prince Rupert Total Terrace SITE SIT	Granisle Granisle Houston Houston Burns Lake 27 400+000 400+000 Automatic ENTRELINE (REV G) PROVIDED BY PEN GOVERNMENT LICENCE – BRITISH LBERS COASTAL GASLINK INVESTIGATION MN-DD 2021-04-29 NED FC	
PROJECT NO. CONTROL REV. FIGURE 19122805 7000 Request OGC2021-011 1		The second seco	Contraction of the second of t	
			Constal Castlink Constal Castlink Constal Castlink Constal Castlink Constal Castlink INVESTIGATION	
		PROJECT NO. CONTROL	Contraction of the second of t	

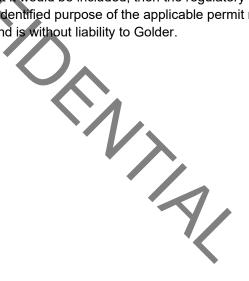

	ERI SI									
	LINIO	JRVEY	LINE							
			VEY LINE	-						
	SINGL	E-BEAN	M BATHYN	IETRIC	SURVEY					
CGL P	PROJEC	тсом	PONENT							
•	KILON	IETRE I	POST (KP,	REV 0	G)					
	PIPEL	INE CE	NTRELINE	E (REV	G)					
===:	ROAD	(CS7 R	EV3)							
	PROJE	ECT FO	OTPRINT	(CS7 F	REV3)					
BASE	MAP FE	EATURE	E							
	CONT	OUR (m	ı)							
	UNPA	/ED RC	AD							
	WATE	RCOUR	SE							
	WATE	RBODY								
		0		1.	25		250			
			:6,000	1.	25	METRE				
			:6,000	1	25	METRE				
NOTE(S)		1				METRE				
NOTE(S)		1	:6,000 -MOR-03* IS			METRE				
NOTE(S)	OCATION	1				METRE				
NOTE(S) 1. THE L REFERE 1. PROP	OCATION	1 OF BH20	-MOR-03* IS	S APPRO			S	PROVIDI	ED BY	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT.	OCATION ENCE(S) POSED PR	OF BH20 OJECT F	-MOR-03* IS EATURES (C	S APPRO	XIMATE.	RELINE	(REV G)			
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COLUME	OCATION ENCE(S) POSED PR PAINS INFO BIA.	OF BH20 OJECT F	-MOR-03* IS EATURES (0 N LICENCEI	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	RELINE	(REV G)			
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COLUME	OCATION ENCE(S) POSED PR PAINS INFO BIA.	OF BH20 OJECT F	-MOR-03* IS EATURES (C	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	RELINE	(REV G)			
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COLUME	OCATION ENCE(S) POSED PR PAINS INFO BIA.	OF BH20 OJECT F	-MOR-03* IS EATURES (0 N LICENCEI	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	RELINE	(REV G)			
NOTE(S) 1. THE L REFERE 1. PROP CLIENT COLUME COORDI CLIENT	OCATION ENCE(S) POSED PR TAINS INFO BIA. INATE SYS	OF BH20 OJECT F DRMATIO STEM: NA	-MOR-03* IS EATURES (C N LICENCEI	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	RELINE	(REV G)			;H
NOTE(S) 1. THE L REFERE 1. PROP CLIENT COLUME COORDI CLIENT	OCATION ENCE(S) POSED PR PAINS INFO BIA.	OF BH20 OJECT F DRMATIO STEM: NA	-MOR-03* IS EATURES (C N LICENCEI	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE L REFERE 1. PROP CLIENT COLUME COORDI CLIENT	ENCE(S) OSED PR AINS INFO BIA. INATE SYS	OF BH20 OJECT F DRMATIO STEM: NA	-MOR-03* IS EATURES (C N LICENCEI	S APPRO CS7 REV D UNDEF	XIMATE. 3) AND CENT R THE OPEN	GOVER	(REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE L' REFERE 1. PROP CLIENT. 2. CONT. COUME COORDI CLIENT COAS PROJEC MORI	COCATION ENCE(S) COSED PR COSED PR CAINS INFO BIA. INATE SYS STAL G CT CE RIV	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN 20NE 9N	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. COUME COORDI CLIENT COAS PROJEC MORI GEOT	COCATION ENCE(S) COSED PR AINS INFO BIA. INATE SYS CTAL G CE RIN FECHN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COUME COORDI CLIENT COAS PROJEC MORI GEOT	COCATION ENCE(S) COSED PR AINS INFO BIA. INATE SYS CTAL G CE RIN FECHN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN 20NE 9N	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE L' REFERE 1. PROP CLIENT COORDI CLIENT COAS PROJEC MORI GEOT	COCATION ENCE(S) COSED PR AINS INFO BIA. INATE SYS CTAL G CE RIN FECHN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN 20NE 9N	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COUME COORDI CLIENT COAS PROJEC MORI GEOT	COCATION ENCE(S) OSED PR OSED PR AINS INFO BIA. INATE SYS STAL G CE RIN CE RIN FECHN PLAN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN 20NE 9N	GOVER	REV G)	ICENCE	– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT COORDI CLIENT COAS PROJEC MORI GEOT TITLE SITE I	COCATION ENCE(S) OSED PR OSED PR AINS INFO BIA. INATE SYS STAL G CE RIN CE RIN FECHN PLAN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN ZONE 9N		REV G)		– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT COORDI CLIENT COAS PROJEC MORI GEOT TITLE SITE I	COCATION ENCE(S) COSED PR COSED PR AINS INFO BIA. INATE SYS STAL G CE RIN CE RIN ECHN PLAN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN /ER CI ICAL A	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K ROSSIN ND GE(G G G G O D D D D D D H Y	XIMATE. 3) AND CENT R THE OPEN ZONE 9N SICAL IN		REV G) NMENT L		– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT COORDI CLIENT COAS PROJEC MORI GEOT TITLE SITE I	COCATION ENCE(S) OSED PR AINS INFO BIA. INATE SYS STAL G CE RIN TECHN PLAN LTANT	OF BH20 OJECT F DRMATIO STEM: NA ASLIN /ER CI ICAL A	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	G G G G O D D D D D D H Y	XIMATE. 3) AND CENT R THE OPEN 20NE 9N SICAL IN <u>YYYY-MM-E</u> <u>DESIGNED</u>		REV G) NMENT L 2021 FC		– BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT COORDI COORDI CLIENT COAS PROJEC MORI GEOT TITLE SITE I CONSUL	CCATION INCE(S) POSED PR AINS INFO BIA. INATE SYS STAL G. CE RIN CE RIN FECHN PLAN LTANT	OF BH20 OJECT F DRMATIO STEM: NA ASLIN /ER CI ICAL A	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K ROSSIN AND GEC	G G G G O D D D D D D H Y	XIMATE. 3) AND CENT R THE OPEN 20NE 9N SICAL IN PREPARED		(REV G) NMENT L IGATI 2021 FC JG		- BRITIS	ık
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT COORDI CLIENT COAS PROJEC MORI GEOT TITLE SITE I	COCATION ENCE(S) COSED PR AINS INFO BIA. INATE SYS STAL G STAL G CE RIN FECHN PLAN ITANT CT NO.	OF BH20 OJECT F DRMATIO STEM: NA ASLIN /ER CI ICAL A	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K ROSSIN ND GE(G G G G O D D D D D D H Y	XIMATE. 3) AND CENT THE OPEN CONE 9N SICAL IN YYYY-MM-E DESIGNED PREPARED REVIEWED APPROVED		(REV G) NMENT L A IGATI 2021 FC JG AH TF	ICENCE - 01 Ga ON -04-29	- BRITIS	
NOTE(S) 1. THE LI REFERE 1. PROP CLIENT. 2. CONT. COUME COORDI CLIENT COAS PROJEC MORI GEOT	COCATION ENCE(S) COSED PR AINS INFO BIA. INATE SYS STAL G CE RIN FECHN	OF BH20 OJECT F DRMATIO STEM: NA ASLIN	-MOR-03* IS EATURES (C N LICENCEI AD 1983 CSF K K ROSSIN	S APPRO	XIMATE. 3) AND CENT R THE OPEN 20NE 9N	GOVER	REV G)	ICENCE	– BRITIS	

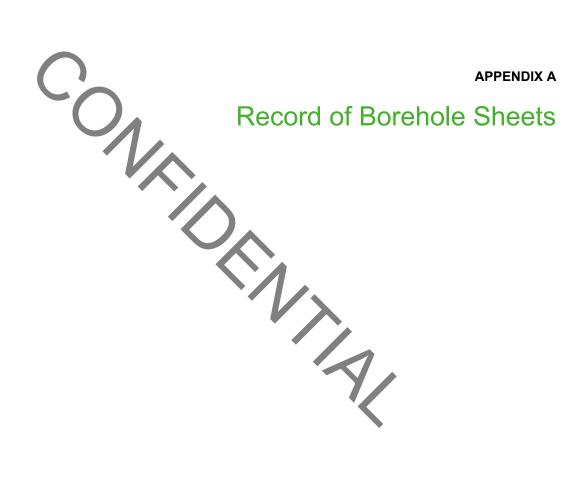

LEGEND


BOREHOLE LOCATION

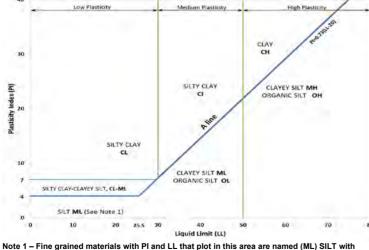

GEOPHYSICAL FIELD INVESTIGATION

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI B


ATTACHMENT


Important Information and Limitations of this Report

This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. The validity of the report may be impacted by any change of site conditions, purpose, or development plans with the passage of time.


When applicable Golder will re-validate the information in the report by proposing a suitable method of validation that may include any or all of the following: 1) review of current site photos and other documentation, 2) engagement with Client team, 3) site visit, and 4) confirmation that the potential use of the report and its data is compatible with the scope and purpose of the investigation. Commencement of the validation proposal shall not proceed without written approval of Client.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process but Golder was not advised that it would be included, then upon the reasonable request of the client, Golder shall authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. For greater certainty, if the report was prepared to be included for a specific permit application process and Golder was advised that it would be included, then the regulatory agency shall be deemed an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without liability to Golder.

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name						
		of is mm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	≥3		GP	GRAVEL						
(ss)	5 mm)	GRAVELS 3% by mass trse fraction r than 4.75 r	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL						
by ma	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL						
sANIC t ≤30%	AINED rger th	< (>	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL						
INORGANIC (Organic Content ≤30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or 2	≥3	<u>≤</u> 30 %	SP	SAND						
ganic (COARS by ma	SANDS % by mass se fraction than 4.75	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND						
Ō	(>50%	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with >12%	Below A Line			n/a				SM	SILTY SAND						
		sma c ()	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND						
Organic	Soil			Laboratow.		F	ield Indica	itors		Ormania		Drimoury						
or Inorganic	Group	Type of Soil		Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name						
		Cabove by mass is simalled menu our simily CLAYS SILTS SILTS and LL plot	(Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)	Contraction Contra	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT						
(ss	75 mm				Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT						
by ma	OILS an 0.0				Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT						
INORGANIC (Organic Content ≤30% by mass)	VED SC aller th				Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT						
INORGANIC Content ≤30%	FINE-GRAINED SOILS mass is smaller than 0.	Nol Nol		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT						
ganic (FINE oy mas	LAYS	lot	lot	lot	ot	ot	lot	art	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
Ō	≥50% t		CLAYS (PI and LL plot above A-Line on Plasticity Chart below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY						
		(Plai		C (Pl al above Plasti b	C (PI al above Plasti b	(PI a above Plast t	Liquid Limit ≥50	None	High	Shiny	<1 m m	High	(see Note 2)	СН	CLAY			
LS NIC	>30% ass)		mineral soil tures			·				30% to 75%	_	SILTY PEAT, SANDY PEAT						
HIGHLY ORGANIC SOILS	Content >30% by mass)	Predominantly peat, may contain some mineral soil, fibrous or amorphous peat						Dual Svm	1	75% to 100%	PT	PEAT						

Dual Symbol A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML. For non-cohesive soils, the dual symbols must be used when

the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML.

A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT.

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)		
BOULDERS	Not Applicable	>300	>12		
COBBLES	Not Applicable	75 to 300	3 to 12		
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75		
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)		
SILT/CLAY	Classified by plasticity	<0.075	< (200)		

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier			
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)			
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable			
> 5 to 12	some			
≤ 5	trace			

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tid resistance (q_i), porewater pressure (u) and sleeve frictions are electronically at 25 mm penetration intervals. recorder

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- РН Sampler advanced by hydraulic pressure
- PM. Sampler advanced by manual pressure
- wн· Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS

C		
Com	pacm	ess

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 - 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects.

2. Definition of compactness terms are based on SPT-'N' ranges as provided in Terzaghi, Peck and Mesri (1996) and correspond to typical average N_{60} values. Many factors affect the recorded SPT-'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), groundwater conditions, and grainsize. As such, the recorded SPT-N' value(s) should be considered only an approximate guide to the compactness term. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction. Field Mainture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
GS	Grab Sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size
TP	Thin-walled, piston – note size
WS	Wash sample

SOIL TESTS

1.

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS

Consistency					
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)			
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure 1. effects; approximate only. SPT 'N' values should be considered ONLY an approximate guide to

2 consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

	Water Content					
Term	Description					
w < PL	Material is estimated to be drier than the Plastic Limit.					
w ~ PL	Material is estimated to be close to the Plastic Limit.					
w > PL	Material is estimated to be wetter than the Plastic Limit.					

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
-	3.1416	w w _l or LL	water content liquid limit
π In x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	Ip or PI	plasticity index = $(w_1 - w_p)$
	acceleration due to gravity	Ws	shrinkage limit
g t	time	IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
		lD	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\stackrel{\prime}{\Delta}$	change in, e.g. in stress; $\Delta \sigma$	h	hydraulic head or potential
3	linear strain	q	rate of flow
ε _v	volumetric strain	v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	i	seepage force per unit volume
σνο	initial effective overburden stress		
σ1, σ2, σ3			
,,	minor)	(C)	Consolidation (one-dimensional)
		Cc	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ'_p	pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*		•
ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρ _s (γ _s)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
DR	relative density (specific gravity) of solid	C'	effective cohesion
	particles (D _R = ρ_s / ρ_w) (formerly G _s)	$\mathbf{C}_{\mathrm{u}},\mathbf{S}_{\mathrm{u}}$	undrained shear strength (ϕ = 0 analysis)
е	void ratio	р	mean total stress (σ_1 + σ_3)/2
n	porosity	p′	mean effective stress ($\sigma'_1 + \sigma'_3$)/2
S	degree of saturation	q	(σ1 - σ3)/2 or (σ′1 - σ′3)/2
		qu	compressive strength (σ_1 - σ_3)
		St	sensitivity
* Dens	ity symbol is ρ. Unit weight symbol is γ N	otes: 1	$\tau = c' + \sigma' \tan \phi'$
	$\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)		

DESCRIPTION OF WEATHERED STATE

Term	Symbol	Description	Discoloration Extent	Fracture Condition	Surface Character
Unweathered	W1	No visible sign of rock material weathering.	None	Closed or Discolored	Unchanged
Slightly Weathered or Altered	W2	Discoloration indicates weathering of rock material on discontinuity surfaces. Less than 5% of rock mass altered.	<20% of fracture spacing on both sides of fracture	Discolored, may contain thin filling	Partial discoloration
Moderately Weathered or Altered	W3	Less than 50% of the rock material is decomposed and/or disintegrated to a soil or altered. Fresh or discolored rock is present either as a discontinuous framework or as corestones.	>20% of fracture spacing on both sides of fracture	Discolored, may contain thick filling	Partial to complete discoloration, not friable except poorly cemented rocks
Highly Weathered or Altered	W4	More than 50% of the rock material is decomposed and/or disintegrated to a soil or is altered. Fresh or discolored rock is present either as a discontinuous framework or as corestones.	Throughout	Filled with alteration minerals	Friable and possibly pitted
Completely Weathered or Altered	W5	100% of rock material is decomposed and/or disintegrated to soil or 100% of minerals have been replaced with alteration minerals. The original mass structure is still largely intact.	Throughout	Filled with alteration minerals	Resembles soil, or all original minerals have been replaced with alteration minerals
Residual Soil (applies to weathering only)	W6	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.	Throughout	N/A	Resembles soil

Reference: Modified after Brown, 1981, "Rock Characterization Testing and Monitoring: ISRM Suggested Methods", International Society for **Rock Mechanics**

DESCRIPTION OF GRAIN/CRYSTAL SIZE

Grain Size	Terminology
> 60 mm	Very Coarse
2 – 60 mm	Coarse
0.06 – 2 mm	Medium
0.002 – 0.06 mm	Fine

DESCRIPTION OF ROCK STRENGTH

Grade	Description	Field Identification	Approx. Range of Uniaxial Compressive Strength (MPa)
G	Granular Soil	Cohesionless, friable, granular soil, sand.	0
S1	Very Soft Clay	Easily penetrated several centimetres by fist.	<0.025
S2	Soft Clay	Easily penetrated several centimetres by thumb.	0.025 – 0.05
S3	Firm Clay	Can be penetrated several centimetres with thumb with moderate effort. Crumbles under light pressure from a nail.	0.05 – 0.1 (<1.0 on Pocket Penetrometer)
S4	Stiff Clay	Readily indented by thumb, but penetrated only with great effort. Crumbles under moderate pressure from a nail.	0.10 – 0.25 (1.0 to 2.5 on Pocket Penetrometer)
S5	Very Stiff Clay	Readily indented by thumbnail	0.25 - 0.50
S6	Hard Clay	Indented with difficulty by thumbnail.	>0.50
R0	Extremely weak	Indented by thumbnail.	0.25 – 1.0 (>2.5 on Pocket Penetrometer)
R1	Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	1.0 - 5.0 (Maximum reading exceeded for Pocket Penetrometer)
R2	Weak	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	5.0 – 25
R3	Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer.	25 – 50
R4	Strong	Specimen requires more than one blow of geological hammer to fracture it.	50 – 100
R5	Very strong	Specimen requires many blows of geological hammer to fracture it.	100 – 250
R6	Extremely strong	Specimen can only be chipped with geological hammer.	>250

Reference: Brown, 1981, "Rock Characterization Testing and Monitoring: ISRM Suggested Methods", International Society for Rock Mechanics **NOTE:** Materials having a uniaxial compressive strength of less than about 0.5 MPa and cohesionless materials should be classified using soil classification systems. (1 MPa = 145 psi)

ADDITIONAL REMARKS AND MODIFIERS

Vein: A feature infilled with crystallized minerals. Open veins are described separately on the discontinuity log.

Sulphide mineralization: The presence of sulphide minerals, possibly including but not limited to pyrite, chalcopyrite and arsenopyrite.

OTHER ROCK LOG DEFINITIONS

Total Core Recovery (TCR): Records the total cumulative length of all core recovered in the core barrel and expressed as a percentage of the total length drilled.

Rock Quality Designation (RQD): The total cumulative length of sound core recovered in lengths greater than 10 cm, as measured along the centreline axis of the core between natural discontinuities, and expressed as a percentage per defined interval e.g. the total length of core run. The 10 cm index length is independent of core size, and is applicable to BQ, NQ, HQ, PQ, 4-inch, and 6-inch core sizes.

Alpha Angle: The maximum angle of dip measured between the discontinuity plane and the core axis (0° = parallel to core axis; 90° = perpendicular to core axis).

Broken Core: Broken core zones are characterized by core pieces that do not form full circumferential segments. Broken core generally consists of angular fragments and generally has the same intact rock strength as the surrounding core. Where core is broken in such a way that discontinuities cannot be recorded, an average estimate of the fragment size (the median dimension) should be recorded to allow for an estimated fracture count. The top and bottom depths of the broken core interval should be recorded on the field log.

Fault Zones: Faults are a fracture or zone along which there has been recognizable displacement. The walls may be polished or slickensided as a result of the shear displacement. Rock on either side of the fault may be shattered, broken, altered or weathered, resulting in fillings such as clay, silt, crushed/pulverized rock (breccia) and/or powder (gouge). In drill core, fault zones often have less than 100% recovery. The top and bottom depths of the fault or fault zone interval should be recorded on the field log.

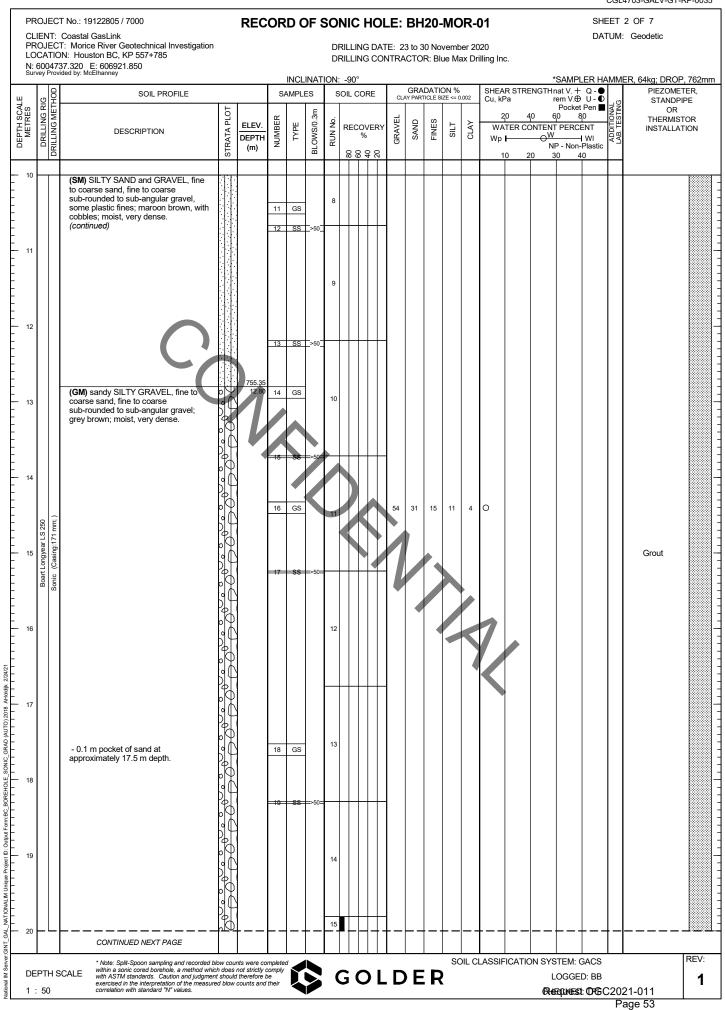
Lost Core: Lost core can occur in zones of unconsolidated material, highly broken zones, fault zones, and zones where the core has been mechanically degraded from the drilling process or due to a drilling error. Zones of lost core may also occur due to natural voids in the subsurface. The top and bottom depths of the lost core interval should be recorded on the field log.

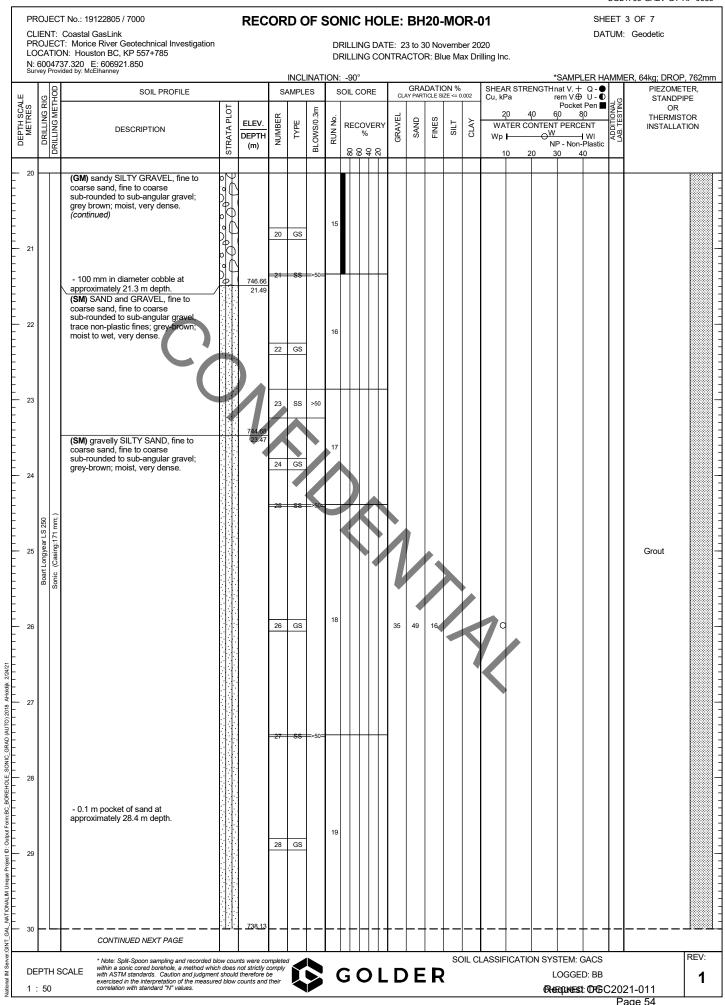
Geotechnical Interval: A geotechnical interval is a portion of core that has similar geotechnical properties. Geotechnical intervals are chosen based on lithology, strength index, weathering index, alteration index, or RQD. The RQD should be recorded for each geotechnical interval. On this project, the minimum length for a geotechnical interval is 15 cm.

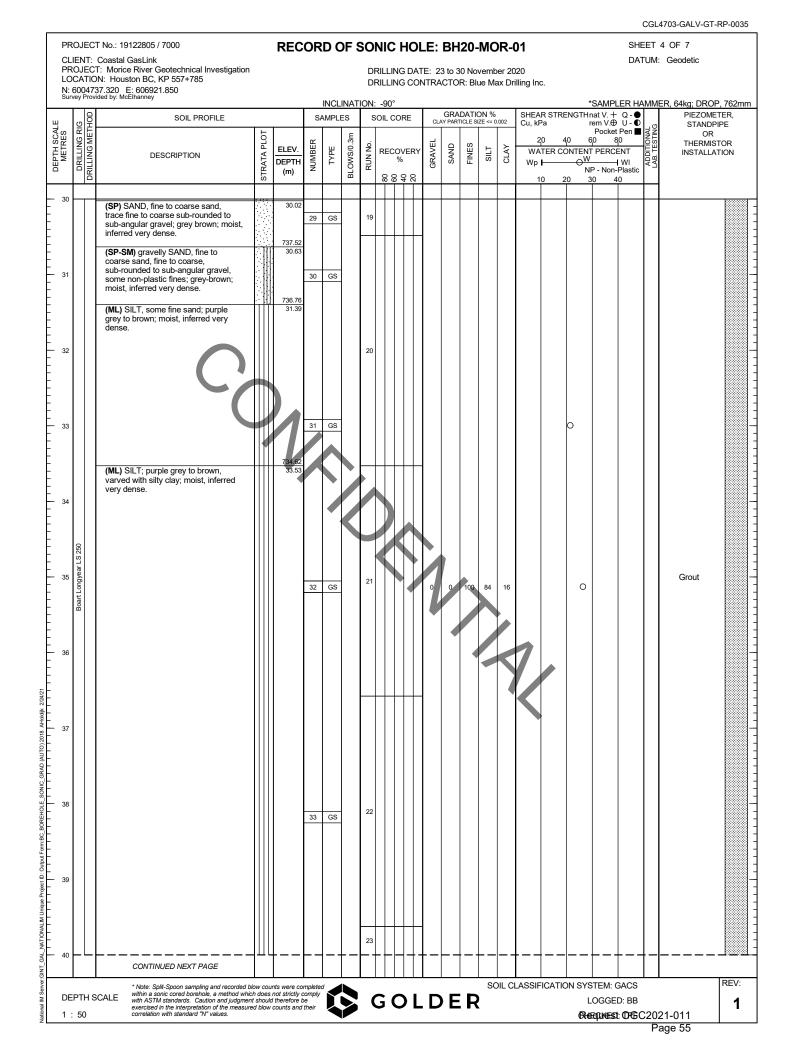
Туре:			Roughness:		
BC	Broken Core		JN	Joint	
FLT	Fault		VN	Vein (Ope	en)
U	Undulating		SM	Smooth	
ST	Stepped		Ro	Rough	
IR	Irregular		VR	Very Rou	gh
Infill Character:		•			
-: Clean		SA: Slightly Altered	CC: Con	tinuously Co	pated (< 1 mm thickness)
ST: Staining Only	,	DC: Discontinuously Coate (≤ 2 mm thickness)	d IN: Infille	ed (> 1 mm t	hickness)
Infilling / Coating	д Туре:				
Br: Broken rock	C	Ca: Calcite	Ch: Chlorite		Cl: Clay
- : Clean	F	e: Iron	M: Silt		Su: Sulphide
Qz: Quartz					

ABBREVIATIONS FOR THE DESCRIPTION OF DISCONTINUITIES:

DESCRIPTION OF DISCONTINUITIES:


Feature Type: Geological description of prominent and distinct discontinuities within the rock, indicating whether the discontinuity is a joint, shear, fault, vein, bedding, contact or foliation.


Shape: Planarity (or shape) of the discontinuity surface at the scale of the cored rock.

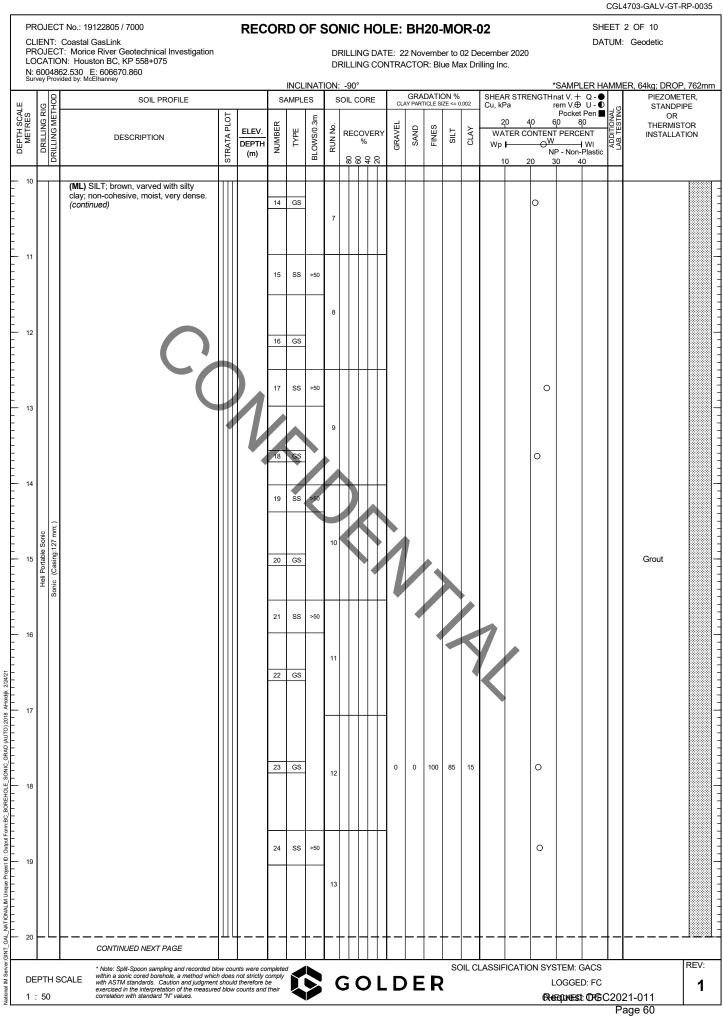

Roughness: Small scale roughness or "feel" of the discontinuity surface at the scale of the cored rock.

Infill Character and Type: Thickness, extent, and mineral or soil composition of the stain, alteration, discontinuous or complete coating or infilling.

CL PR	IENT OJE	T: (ECT	ΓΝο.: 19122805 / 7000 Coastal GasLink Γ: Morice River Geotechnical Investigation		REC	OR	DC	OF S						BH 3 to 3								SHE	EET	4703-GALV-GT-F 1 OF 7 Geodetic	RP-0035
	6004 vey Pr	173 rovic	N: Houston BC, KP 557+785 37.320 E: 606921.850 ded by: McElhanney			1	INCL	INAT				CON	ITRA				ıx Dri	lling In					MME	ER, 64kg; DROP	
DEPTH SCALE METRES	DRILLING RIG	DRILLING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	AMPLI HAL	BLOWS/0.3m	RUN No.	RE		ERY	GRAVEL			SILT SILT	CLAY 20	Cu, k 2 WA Wp	Pa 20 ATER C	40 CONTEN	T PERC / IP - Non	⊖ Ü- Ŭ t Pen ■ 80 ENT - WI	ADDITIONAL LAB. TESTING	PIEZOMET STANDPI OR THERMIST INSTALLAT	PE OR
- 0		Hand Excavation	Ground Surface (SM) SAND and SILT, fine to coarse sand, some fine to coarse sub-rounded gravel; orange brown, with organics (rootlets); moist, inferred loose. (SM) gravelly SILTY SAND, fine to		768.15 0.00 767.24 0.91	1	GS		1																
2			coarse sand, fine to coarse sub-rounded to sub-angular gravel; brown; moist, very dense.			2	SS GS	>50	2																
3 4 5	art Longyear LS 250	nic (Casing:171 mm;)	(CL-ML) gravelly SILTY CLAY to CLAYEY SILT, fine to coarse sub-rounded to sub-angular gravel, some fine to medium sand; grey, with cobbles; w <pl, hard.<="" td=""><td></td><td>764.49 3.66</td><td>4</td><td>SS GS SS</td><td>50 >50</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td>0</td><td>1</td><td></td><td></td><td></td><td>Grout</td><td></td></pl,>		764.49 3.66	4	SS GS SS	50 >50	3									C	0	 1				Grout	
6	BC	Son	(SM) SILTY SAND and GRAVEL, fine to coarse sand, fine to coarse sub-rounded to sub-angular gravel, some plastic fines; maroon brown, with cobbles; moist, very dense.		<u>761.44</u> 6.71	7	SS GS	>50	5									2							
8						9	SS	>50	6										0						
10		_	CONTINUED NEXT PAGE			10	SS	>50	8			+-													
	PTH 50	I S	* Note: Split-Spoon sampling and recorded blow within a sonic cored borehole, a method which d with ASTM standards. Caution and judgment sl exercised in the interpretation of the measured t correlation with standard "N" values.	loes r hould	not strictly of therefore b	comply be			(G	0	L	D	E	R	SC	IL CI	ASSI	ICAT		STEM: LOGGE	D: BB		21-011 age 52	REV: 1

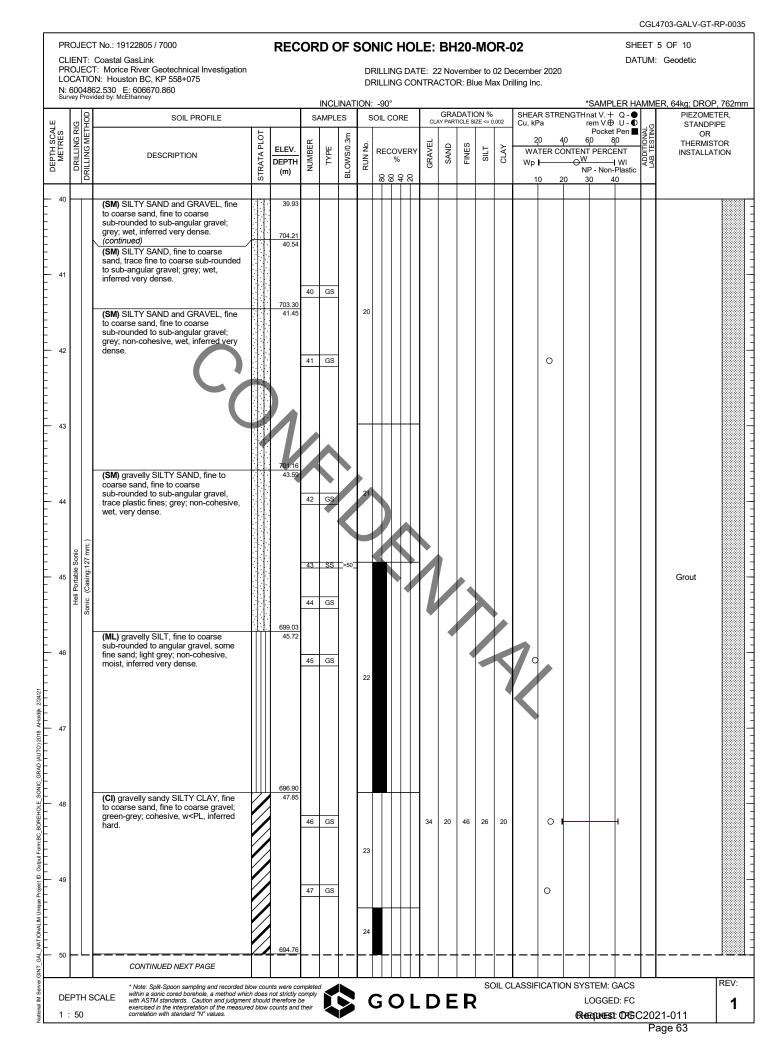
			T No.: 19122805 / 7000 Coastal GasLink		REC	OR	DO)F S	SON	VIC	HO	_E:	BH	20-	MO)R-(01						5 OF 7 Geodetic	
PF LC	ROJ DCA	EC1	T: Morice River Geotechnical Investigation N: Houston BC, KP 557+785 37.320 E: 606921.850 ded by: McEihanney								NG DA ⁻ NG CO							C .						
	_		SOIL PROFILE				INCLI AMPLE				ORE	GL	GRA AY PART		DN %	002	SHEA	R STRE Pa					ER, 64kg; DROP, 7 PIEZOMETE	ER,
DEPTH SCALE METRES	DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN		OVERY % 8	GRAVEL	SAND	FINES	SILT	CLAY	2 WA Wp	0 4 TER CO		Pocket 0 8	Pen ∎ 0 ENT WI Plastic	ADDITIONAL LAB. TESTING	STANDPIPI OR THERMISTC INSTALLATIC	DR
Methode Protection Control France Control States and Active States		Sonic (Casing:152 mm;) DRILLING MET	(ML) SILT; purple grey to brown, varved with silty clay; moist, inferred very dense. (continued)		DEPTH	34 35 37	8 8	BLOWS/0.3m			%	0 GRAVEL	0 SAND	LINE INTERNATIONAL PROVINCI PR	8 SILT	14 It	2 WA Wp	0 4 TER CCC 0 2: 		Pocket 0 8 PERCE P - Non-	Pen ∎ 0 ENT WI Plastic	TESTIN	OR THERMISTC	DR
1			some non-plastic fines; grey brown; wet, inferred very dense.						26													-		
er:GINT_G			CONTINUED NEXT PAGE															104710					L [c	REV:
la	EPT : 5(* Note: Split-Spoon sampling and recorded blow within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measure correlation with standard "V" values.	1 does shoul	not strictly d therefore l	comply be			C	G (OL	. D	E	R	SC	DIL CI	LASSIF	ICATIO	L	OGGE	D: BB	220	21-011	1 1
ž	. 5	J	CONCIALION WILL STATION ON VALUES.					-											tite	utiles)	: UHG(202v	21-011 age 56	

age

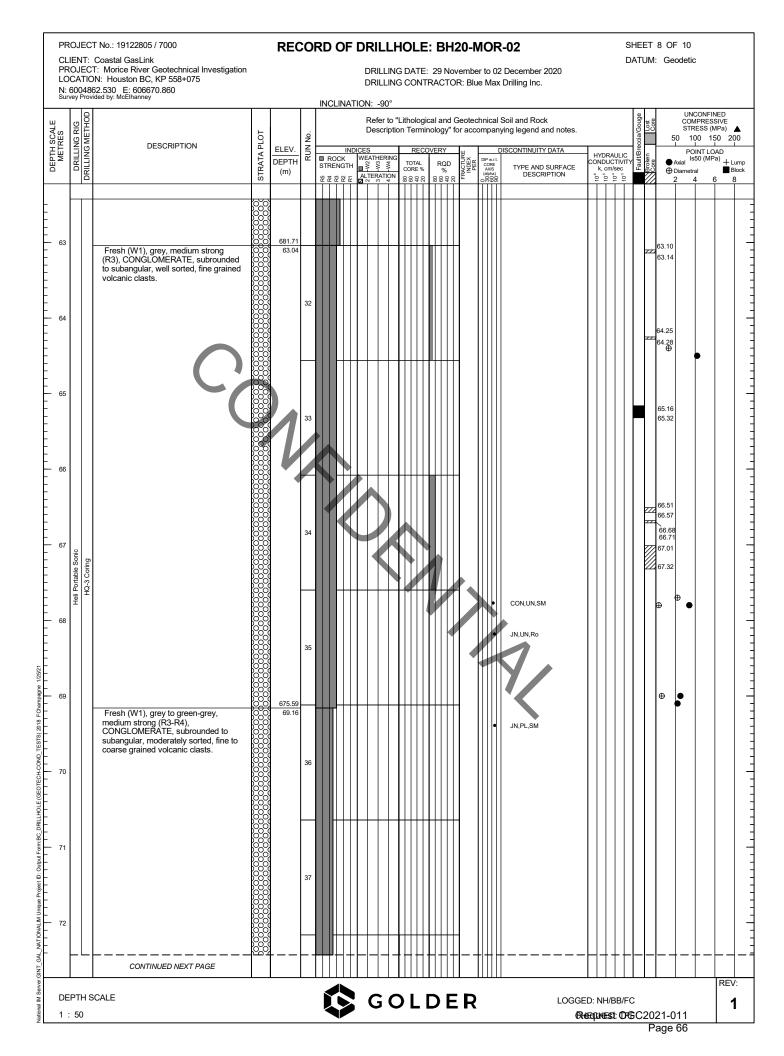

CL	IEN	IT:	T No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	DF \$	SON	١C	НС	DLE:	BH	20-	MO	R-0	01						6 OF 7 : Geodetic	
LO	CA	TIO	T: Morice River Geotechnical Investigation N: Houston BC, KP 557+785 37.320 E: 606921.850 ded by: McEihanney									ATE: 2 ONTR					20 Iling Ind) .						
	_	_	SOIL PROFILE				INCL AMPL		ION:		ORE	CI	GRA AY PART		ON % IZE <= 0.0	002	SHEA Cu, kF		ENGTH	nat V. +	Q - •		ER, 64kg; DROP, PIEZOMETE STANDPIP	ER,
DEPTH SCALE METRES	DRILLING R	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.		OVER % 3	GRA	SAND	FINES	SILT	CLAY	Wp	TER C		T PERC	WI	ADDITIONAL LAB. TESTIN	THERMISTO	
- 50 			(SP-SM) SAND and GRAVEL, fine to coarse sand, fine to coarse sub-rounded to sub-angular gravel, some non-plastic fines; grey brown; wet, inferred very dense. (continued)			38	GS		26															-
- 52 - 52 - 53 - 53			(SM) gravelly SILTY SAND, fine to coarse sand, fine to coarse, sub-rounded to sub-angular gravel; grey brown, with cobbles; wet, inferred very dense.		716.03		GS		27			31	48	21										-
- 54 - 54 - 55	Boart Longyear LS 250	Sonic (Casing:152 mm;)	(GP) GRAVEL and SAND, fine to coarse sand, fine to coarse sub-rounded to sub-angular, trace non-plastic fines; grey brown; wet, inferred very dense.		713.59																		Grout	
- 56 - 56 - 57 - 57		SC				40	GS		28			57	38	5			2							-
58	_					41	GS		29								0							
DE 1 :			CONTINUED NEXT PAGE * Note: Split-Spoon sampling and recorded bi within a sonic cored boxehole, a method whic with ASTM standards. Caution and judgmen exercised in the interpretation of the measure correlation with standard "N" values.	h does t shoul	not strictly d therefore l	comply be	ď		ــــا ۲	 G ()) E	R	SO	IL CI	_ASSIF	ICATI	l	STEM: (_OGGE	D: BB		21-011 219 57	REV: 1

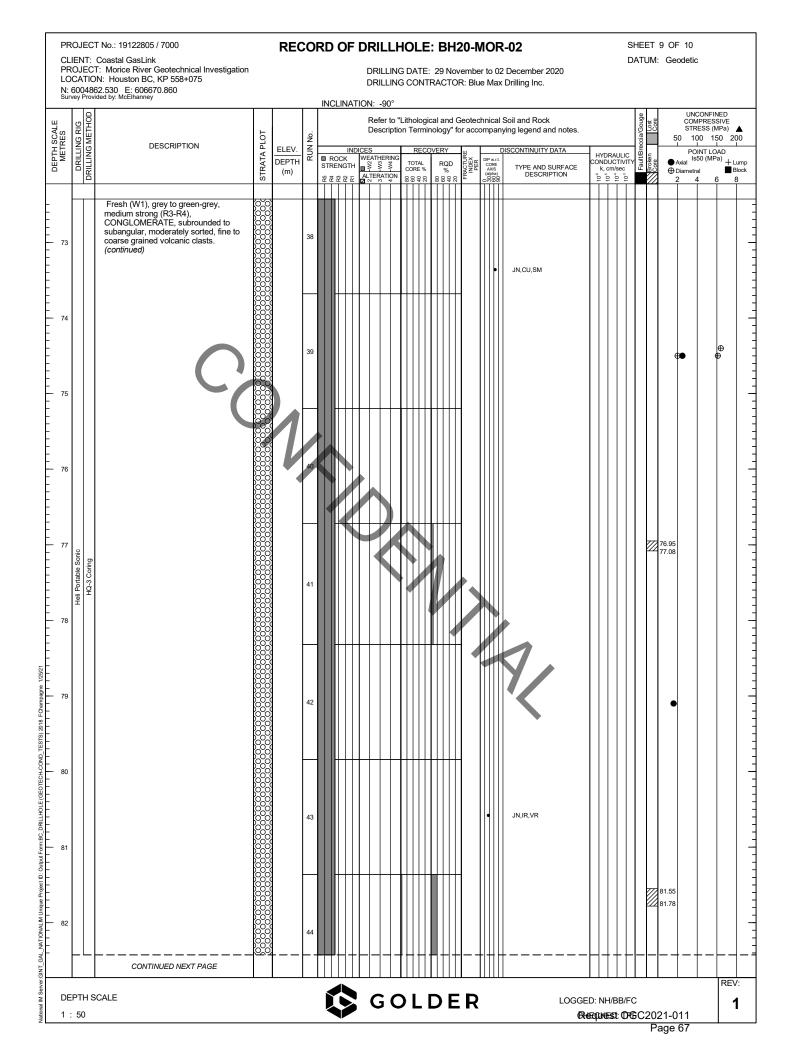
age

																						CGL	4703-GALV-GT-F	RP-0035
CLIEN PROJE	IT: Coastal ECT: Morio	ce River Geotechnical Investigation	I	REC	OR	DC)F S						BH 3 to 3										7 OF 7 : Geodetic	
		ston BC, KP 557+785 E: 606921.850 cElhanney						DF	RILLI	NG	CON	ITRA	CTO	R: Blu	ue Ma	ıx Dri	lling In	IC.						
		SOIL PROFILE				INCLI AMPLE								DATIO	DN %		SHE/	AR ST	RENGTI				ER, 64kg; DROP PIEZOMET	ER,
DEPTH SCALE METRES DRILLING RIG	DRILLING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.		0VE		GRAVEL	SAND	FINES	SILT	CLAY	WA Wp	20 ATER (Pock 60 NT PER V	et Pen 80	ADDITIONAL AB. TESTINO	STANDPI OR THERMIST INSTALLAT	OR
60 61 61 62 63 63	(GP) coars sub-r non-p inferro (SM) coars sub-r	GRAVEL and SAND, fine to e sand, fine to coarse bunded to sub-angular, trace lastic fines; grey brown; wet, ed very dense. <i>(continued)</i> gravelly SILTY SAND, fine to e sand, fine to coarse bunded to sub-angular gravel; wet, inferred very dense		706.58 61.57	42			30				21	49	30	22	8	0			30			Grout	
	- Drillin 68.58 r mm pi hole at	Ig rod broke while advancing to n. Approximately 120 mm x 100 acc of broken steel rod lost down approximately 68.58 m depth		<u>699.57</u> 68.58				31 32 33 33 34									2							
- 69 	Drill st prever	: Sonic Hole eel lost down hole tiing further cement.																						
DEPTH 1 : 50	H SCALE	* Note: Split-Spoon sampling and recorded I within a sonic cored borehole, a method whi with ASTM standards. Caution and judgme exercised in the interpretation of the measu correlation with standard "N" values.	ich does nt should	not strictly of therefore l	comply be			(G	0	L	D	E	R	SC	IL CI	ASSI	FICAT	ION SY	LOGG	ED: BB	C20	21-011 age 58	REV: 1


			r No.: 19122805 / 7000 Coastal GasLink		REC	OR	DO	DF \$	SO	NIC	C HO	OL	.E:	BH	20-	MC)R-()2					EET	4703-GALV-GT- 1 OF 10 : Geodetic	
LOC	CAT	TIOI	F: Morice River Geotechnical Investigation N: Houston BC, KP 558+075 52.530 E: 606670.860 ded by: McEihanney						DI	RILLI	NGC							ecembe Iling In)	****				
			SOIL PROFILE				INCL AMPL		1			-		GRA	DATIO	ON %				ENGT	Hnat V.	+ Q-		ER, 64kg; DROF PIEZOME	TER,
	DRILLING RIG	DRILLING METHO		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RUN No.	REC	00VE	RY	GRAVEL	AY PART DNPS	LICLE SI	SILT	CLAY	WA Wp	0 TER C		Pocl 60 NT PEF W	x ⊕ Ü - Ŭ ket Pen ∎ 80 RCENT → WI on-Plastic 40	ADDITIONAL AB. TESTING	STANDP OR THERMIS INSTALLA	TOF
- c		Hand Excavation	Ground Surface SUMP. Assumed minimal thickness of forest litter and top soil, underlain by SAND and Gravel.		744.75																				
-			(SP-SM) SAND and GRAVEL, fine to coarse sand, fine to coarse sub-rounded to sub-angular gravel, some non-plastic fines; brown, with cobbles; moist to wet, very dense.		743.84	1	GS	-	1																
2		-	(SP) SAND, fine to coarse sand, trace fine sub-rounded to sub-angular		742.31 2.44	2	ss	>50	2									0							
5			gravel, trace non-plastic fines; brown; wet, compact.		741.09	3	GS											0							
			(CL) SILTY CLAY, brown; w>PL, inferred stiff. (SM) SILTY SAND and GRAVEL, fine to coarse sand, fine to coarse		741.09 3.66 740.79 3.96	4	SS GS	15	3																
			sub-rounded to sub-angular gravel; brown, with cobbles; wet, inferred very dense.		739.87	6	GS											0							
	Por	Sonic (Casing:127 mm;)	(SP) SAND and GRAVEL, fine to coarse sand, fine to coarse sub-rounded to sub-angular gravel, trace non-plastic fines; brown; wet, very dense. - cobble at approximately 4.9 m depth.		4.88	8	SS GS	>50	4				44	54	2			0						Grout	
		-	(SM) gravelly SILTY SAND, fine to coarse sand, fine to coarse sub-rounded to sub-angular gravel;		738.35 6.40	9	SS	>50	-											þ					
			grey; wet, very dense.			10	GS	-	5										*						
		-	(ML) SILT; brown, varved with silty clay; non-cohesive, moist, very dense.		736.75 8.00	. 11	SS	>50																	
,						12	GS	-	6				0	1	99	75	24			ο					
,					 	13	SS	>50	7										 						
			CONTINUED NEXT PAGE																						-
	РТН 50		* Note: Split-Spoon sampling and recorded blow within a sonic cored borehole, a method which th ASTM standards. Caution and judgment s exercised in the interpretation of the measured correlation with standard "IV values.	does i should	not strictly of therefore l	comply be	ď		(G	0	L	D	E	R	so	DIL CI	_ASSIF	ICATI		LOGO	1: GACS GED: FC		21-011	R

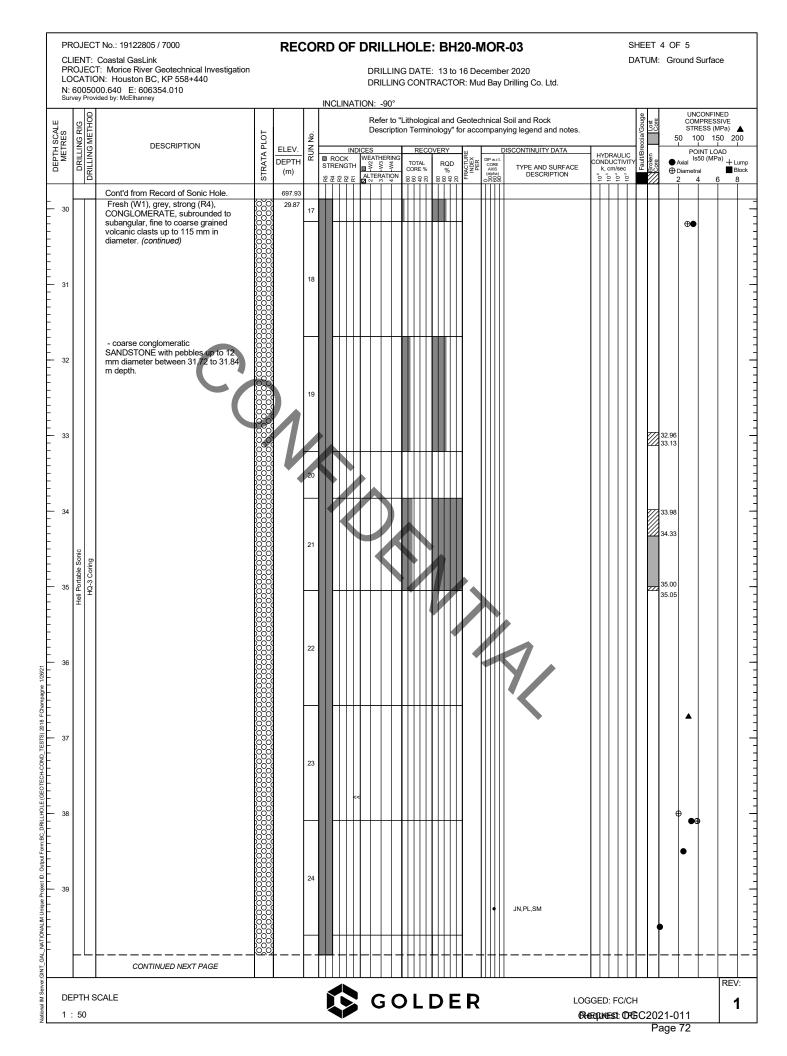
Page 59


CLII PRO LOO	ENT: DJEC CATIC	T No.: 19122805 / 7000 Coastal GasLink T: Morice River Geotechnical Investigation IN: Houston BC, KP 558+075		REC	OR	DO	FS	DRI	NG DA	TE: 2	2 Nov	emb	er to ()2 De)2 ecembe	1				3 OF 10 Geodetic	
	_	62.530 E: 606670.860 Ided by: McElhanney SOIL PROFILE		1		INCLII AMPLE			ORE	CL	GRA AY PART	DATIC TICLE SI	DN % ZE <= 0.	002	SHEA Cu, kF	ENGTH	nat V. rem V.€		.0	ER, 64kg; DROP, PIEZOMET STANDPI	ER,
DEPTH SCALE METRES	DRILLING RIG DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN	0VER) % 3	GRAVEL	SAND	FINES	SILT	CLAY	WA Wp		0 8 PERC	30 ENT I WI	ADDITIONA LAB. TESTIN	OR THERMIST INSTALLAT	
	Hell Portable Sonic Sonic (Casing:127 mm;)	(ML) SILT; brown, varved with silty clay; non-cohesive, moist, very dense. (continued)		719.45	29	GS	>50	13		0	0	100	74	26		0				Grout	
DEF		CONTINUED NEXT PAGE * Note: Split-Spoon sampling and recorded bid within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measure correlation with standard "N" values.	h does should	not strictly therefore i	comply be			-+- 	 D L	- - D) E	R		IL CI	_ASSIF		OGGE	D: FC		21-011 age 61	REV: 1


																						CGL4	4703-GALV-GT-	RP-0035
			F No.: 19122805 / 7000	I	REC	OR	DC	DF S	SOI	NIC	Ю	DLE	: B	H20	-MC	DR-	02						4 OF 10	
PR LO	lOJ ICA		Coastal GasLink Γ: Morice River Geotechnical Investigation Ν: Houston BC, KP 558+075											lovemb OR: B					20		DAI		Geodetic	
N: Sur	600 vey	0486 Provi	62.530 E: 606670.860 ded by: McElhanney				INCL	INAT												*SAMP	LER HA	MME	ER, 64kg; DROF	. 762mn
щ	ڻ ن	П	SOIL PROFILE				AMPLE				CORE		GI CLAY P.	RADATI ARTICLE S	ION % SIZE <= ().002	SHE/ Cu, k		RENGTH	Inat V. +	- Q-•		PIEZOME	ΓER,
DEPTH SCALE METRES	NG RI	DRILLING METHOD		PLOT		ER		0.3m	oj			ī				≻		20		40	9 0 - € t Pen ■ 80	FIONAL	OR THERMIS	
METH	ORILLI	ILLING	DESCRIPTION	.⊲ –	ELEV.	NUMBER	түре	BLOWS/0.3m	RUN No.	REC	OVEF %	۲Y کې		FINES	SILT	CLAY	Wp Wp			IT PERC / IP - Non	w	ADDI7 LAB. T	INSTALLA	TION
		R		STF	(m)	-		BL	_	88	3 4 8	2	_	_				10			40			
- 30 -	-		(SM) SILTY SAND and GRAVEL, fine			33	GS						-	-			0							
-			to coarse sand, fine to coarse sub-rounded to sub-angular gravel; grey, with cobbles up to 120 mm in						16															
-			diameter; wet, very dense. (continued)																					
-			• • •			34	SS	>50				_												
- 31 -			- - -																					
			• • •																					
- 32																								
-									17															
-																								
						35	GS										0							
- 33					Λ																			
			• • •																					
			· · · · · · · · · · · · · · · · · · ·		711.07																			
			(SM) gravelly SILTY SAND, fine to coarse sand, fine to coarse		33.68	36 37	GS SS	>50				_					0							
- 34			sub-rounded to angular gravel; brown to grey, cobbles up to 100 mm in diameter; moist, very dense.																					
			diameter, moist, very dense.																					
	onic	(:um;)																						
- 35	able So	(Casing:127											1										Grout	
	Heli Portable Sonic		• • •		709.39							1												
		Sonic	(SM) SILTY SAND and GRAVEL, fine to coarse sand, fine to coarse		35.36				18															
			sub-rounded to angular gravel; grey with multi-coloured rock, with cobbles																					
- 36			up to 100 mm; moist, inferred very dense.														7							
			(ML) SILT and SAND, fine to medium		708.48 36.27																			
			sand; grey; non-cohesive, moist, very dense.			38	GS					0) 4	8 52	50	2		1.	0					
						39		>50				_												
- 37				Щ	707.56																			
			(GP) GRAVEL with cobbles up to 100 mm in diameter and boulders.		37.19																			
- 38				ŝ O																				
				0																				
			h	S°					19															
			o	0																				
39			b																					
			p	0																				
					704.82																			
- 40	F		 CONTINUED NEXT PAGE	'- 		<u> </u> -			20	-†		+-	- -	1-	+-				-		+	† -		100000000
	<u> </u>	1	* Note: Split-Spoon sampling and recorded blow within a sonic cored borehole, a method which o	v counts	s were co	mplete	d 🍆				<u> </u>				S	JIL C	LASSI	FICAT	ION SY	STEM:	GACS			REV:
			CALE with ASTM standards. Caution and judgment s exercised in the interpretation of the measured correlation with standard "N" values.	should th	herefore b	be :	Ĭ		(G (0	LI	DI	EF	2							2000	01 011	1
1 :	. ၁(J	conclation with standard IN Values.																BH	uquies	a: UHBC	202	21-011 age 62	

c	CLIE	ENT:	T No.: 19122805 / 7000 Coastal GasLink	RECORD OF SONIC HOLE: BH20-MOR-02 DRILLING DATE: 22 November to 02 December 2020														SHEET 6 OF 10 DATUM: Geodetic						
L	.00	ATIC	T: Morice River Geotechnical Investigation DN: Houston BC, KP 558+075 62 530 E: 606670 860															ecembe Iling In		0				
s			62.530 E: 606670.860 ided by: McElhanney	INCL							CRA		ON %			DOTO					ER, 64kg; DROP, 762mm			
DEPTH SCALE MFTRES		DRILLING RIG	SOIL PROFILE	F		S/	AMPLE		sc	DIL C	CORE		GH CLAY P/		TICLE SI	ZE <= 0.	.002	Cu, k	Pa	RENGTH	rem V.e Pocke	FQ- €U- €tPen ∎	ING	PIEZOMETER, STANDPIPE OR
TH SC			DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	N	REC	OVEI	RY	GRAVEL	SAND	FINES	SILT	CLAY		0 TER C		60 T DEDC	8 <mark>0</mark>	DITION	THERMISTOR
DEP.		RILLIN	DESCRIPTION	IRAT/	DEPTH (m)	NUM	≿	I OW	RUN No.		%		GR/	SA	Ē	SI	C	Wp			/ IP - Nor	H WI Plastic	ADC LAB.	
	-			ν	()					88	348	8							0	20	30	40	+	
5	0	(:	Slightly weathered (W2), grey, CONGLOMERATE. (continued)		49.99																			
- 5 		Sonic (Casing:127 mm;	Fresh to moderately weathered (W1-W3), grey, medium strong (R3), SANDSTONE. - slightly altered from 51.51 m to 51.82 m depth.		<u>693.54</u> 51.21				24															-
	2		Bedrock Encountered. Refer to Record of DRILLHOLE log for		692.32 52.43																			
- 5 	3		continuation of rock description.		1																			
- - - - -	4																							
- - - - - - - - -	5																							-
- - - - - - - - -	6												•					7						
5	7																		•					
	8																							-
	9																							-
6	0																							-
	DEP :		* Note: Split-Spoon sampling and recorded bit within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measured correlation with standard *N" values.	h does r should	not strictly of therefore b	comply be			C	G (C	L	D	E	R	SC	DIL CI	L_ASSII	I FICAT		LOGGE	ED: FC	L C20	21-011 REV: 21-011 1

		CORD OF DRILLHOLE: BH20-MOR-02 SHEET 7 OF 10 DATUM: Geodetic			
PF LC	ROJE DCAT	IT: Coastal GasLink ECT: Morice River Geotechnical Investigation TION: Houston BC, KP 558+075 4862.530 E: 606670.860		DRILLING DATE: 29 November to 02 December 2020 DRILLING CONTRACTOR: Blue Max Drilling Inc.	
		14862.530 E: 606670.860 Provided by: McElhanney		INCLINATION: -90° Refer to "Lithological and Geotechnical Soil and Rock	ONFINED RESSIVE
DEPTH SCALE METRES	DRILLING RIG		ELEV.	2 Description Terminology" for accompanying legend and notes.	SS (MPa) ▲ 0 150 200
DEPTH	DRILL	DRILLING	(m) (m) (m)	STRENGTH	IT LOAD (MPa) + Lump Block
_		Cont'd from Record of Sonic Hole. Fresh (W1), grey, medium strong	692.32 		6 8
-		(R3), SANDSTONE with trace carbonaceous sediments.			
— 53 —					
				53.69	
- 54				53.82	
-					
-					
- 55 -				55.00	
-		Fresh (W1), green-grey, weak (R2),	689 21 0.0 55 54		
- - - 56		CONGLOMERATE, subrounded, moderately sorted, medium to coarse grained volcanic clasts up to 20 mm in			
-		diameter.		27	
-					
_ 57 	onic	Fresh (W1), grey, medium strong to weak (R3-R2), CONGLOMERATE, subrounded to subangular, moderately	000 687.79 000 56.96		
-	Heli Portable Sonic	subrounded to subangular, moderately sorted, fine to coarse volcanic clasts up to 40 mm in diameter.			
		Ť		28	
— 58 - -					
-					
- 59					
-				29	
-					
- 60 -				60.32	
-				60.34	
- - 61					
- 62 -				31	
		CONTINUED NEXT PAGE		┝╴┲┯┯┯┥┼┝╵┥┤┥╉┟┥┟┥╋╢┽╢┼╢╴╺╢╢╟┼╶╴╴╸╴╸╸┝┤┥┼┼┾┝╸┝╸┥╸┼	
		H SCALE		GOLDER LOGGED: NH/BB/FC	REV:
1	: 50)		িচ্চেয়েন্ডের: টেন্টC2021-011 Page 65	

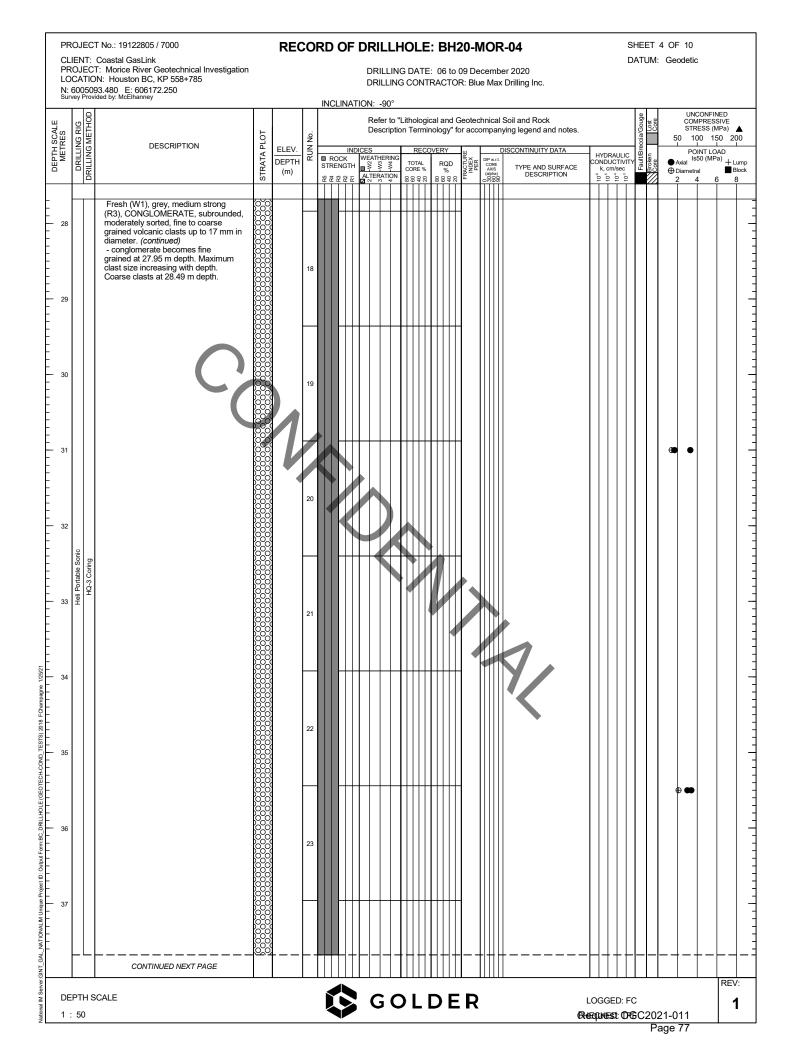


PROJECT No.: 19122805 / 7000 CLIENT: Coastal GasLink PROJECT: Morice River Geotechnical Investigation	SHEET 10 OF 10 DATUM: Geodetic 20	
LOCATION: Houston BC, KP 558+075 N: 6004862.530 E: 606670.860 Survey Provided by: McElhanney	DRILLING CONTRACTOR: Blue Max Drilling Inc.	
DEPTH SCALE METRES DRILLING METHOD DRILLING METHOD	Log Refer to "Lithological and Geotechnical Soil and Rock Description Terminology" for accompanying legend and in DEPTH (m) Discontinuity Date Discontinuity Date (DEPTH (m) Discontinuity Date (DEPTH (m) Discontinuity Date (DEPTH (m) 0	TA HYDRAULIC CONDUCTIVITY ₹FACE k, cm/sec k, cm/sec Hydraulic blanetral Block
Image: Constraint of the second state of the second sta		
DEPTH SCALE 1 : 50		LOGGED: NH/BB/FC REV: ФЕСОДОСТ-011 1 Раде 68 2

CL PR LC	IENT OJE CAT	JECT No.: 19122805 / 7000 NT: Coastal GasLink JECT: Morice River Geotechnical Investigatior ATION: Houston BC, KP 558+440	REC	OR	DC	DF S	DR		NG D)ATE	E: 13	3 to 15	5 Dec	cemb	er 20		o. Ltd.					1 OF 5 Ground Surface	e	
N: Sur	6005 vey Pr	05000.640 E: 606354.010 Provided by: McElhanney				INCL	INAT	ION:	-90°	,							-		,	*SAMP	LER HA	MM	ER, 64kg; DROP	<u>, 762mm</u>
Ц	0	SOIL PROFILE			SA	AMPLE	ES	sc	DIL C	ORE		CLA	GRAD	GRADATION % PARTICLE SIZE <= 0.0			SHEA Cu, kl		ENGTH	nat V. rem V.€) U - D	ە∟	PIEZOMET STANDPI	
DEPTH SCALE METRES	DRILLING RIG	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	RUN		0VEF %		GRAVEL	SAND	FINES	SILT	CLAY	WA Wp			60 8 T PERC / IP - Non	w	ADDITIONA LAB. TESTIN	OR THERMIST INSTALLAT	
— o		Ground Surface SUMP. Assumed minimal thickness		727.80							\square		_											
		SUMP. Assumed minimai thickness of forest litter and top soil, underlain by SAND and GRAVEL.	U° 0 00° 0																					
- 1 - - - - - -		(GP) GRAVEL and SAND, fine to coarse sand, fine to coarse sub-angular to rounded gravel; brown with cobbles up to 110 mm in diameter; non-cohesive, moist, inferred compact.		0.91	1	GS		1																
- 2 		(GP) sandy GRAVEL, fine to coarse sand, fine to coarse sub-angular to rounded gravel, trace non-plastic fines;		725.36	2	SS	>50																	
- 3 		grey-brown, with cobbles; non-cohesive, wet, very dense.		1	3	GS		2																
- - - - - - -	4		0000000		4	SS	>50																	
- - - - - - -	Portable Sonic	- SAND and GRAVEL below 5.49 m			5	GS		3				71	28	1			0						Grout	
	1			721.86 5.94	6	SS GS	>50	4									7							
- - - - - - - - - - -					8	GS						0	0	100	76	24			-0-	+-1				
				720.03	9 10	SS GS	30	5																
		(SM) SILTY SAND, fine to coarse sand; grey; non-cohesive, wet, inferred dense. (ML) CLAYEY SILT; maroon-grey; cohesive, w>PL, inferred very stiff to		7.77 719.72 8.08	11	GS		5																
		 conesive, wPPL, inferred Very stiff to hard. (GP-GM) SAND and GRAVEL, fine to coarse sand, fine to coarse sub-angular to rounded gravel, trace to some non-plastic fines; grey; non-cohesive, wet, very dense. 	0000	719.27 8.53	12	SS	94																	
			0000		13	GS		6						_			0	 						
		CONTINUED NEXT PAGE																						
	: 50	* Note: Split-Spoon sampling and recorded within a sonic cored borehole, a method wh with ASTM standards. Caution and judgme exercised in the interpretation of the measu correlation with standard "N" values.	ch does i	not strictly of	comply			C	; (0	L	D	Ε	R		OIL CI	ASSIF	ICATI	l	stem: Logge Ecquices	D: FC		21-011 age 69	REV: 1

		T No.: 19122805 / 7000 Coastal GasLink	RECORD OF SONIC HOLE: BH20-MOR-03														SHEET 2 OF 5 DATUM: Ground Surface							
PR LO N:	20J 0CA 600	ECT TIC	T: Morice River Geotechnical Investigation DN: Houston BC, KP 558+440 00.640 E: 606354.010								NG DA NG CO							. Ltd.			Di ti	0.01		
	_		ided by: McElhanney SOIL PROFILE				INCL AMPLE				CORE	CL	GRAI AY PART	DATIC TICLE SI	ON % ZE <= 0.	002	SHEA Cu, kł		ENGTH	NGTHnat V. + Q - ●			ER, 64kg; DROP, 762mm PIEZOMETER,	
DEPTH SCALE METRES	DRILLING RIC	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN		0 4 8 %		SAND	FINES	SILT	CLAY	2 WA Wp	0 TER C	40 0 ONTEN OW N	Pocket 60 8 T PERCI /	Pen III 0 ENT WI	ADDITIONAL LAB. TESTING	STANDPIPI OR THERMISTC INSTALLATIC	R
10 11 			(GP-GM) SAND and GRAVEL, fine to coarse sand, fine to coarse sub-angular to rounded gravel, trace to some non-plastic fines; grey; non-cohesive, wet, very dense. (continued)		716.52	14	SS GS	81	7								0							
- - - - - - - - - - - - - - - - - - -			 (SM) gravelly SILTY SAND, fine to coarse sand, fine to coarse sub-angular to rounded gravel; grey; non-cohesive, wet, dense. (SM) SILTY SAND and GRAVEL, fine to coarse sand, fine to coarse sub-angular to rounded gravel; grey; non-cohesive, wet, inferred dense. (GP) GRAVEL and SAND, fine to coarse sand, fine to coarse sub-angular to rounded gravel, trace non-plastic fines; grey; non-cohesive, wet, very dense. 		715.91 715.00	16	SS GS	39	8			-					0							
- 13 - 13 					12.80	18 19	SS	>50	9			60	36	4			0							
	Heli Portable Sonic	Sonic (Casing:152 mm;)	(ML) SILT, some sand to sandy; grey, varved with silty clay; non-cohesive, wet, dense.		712.41 15.39	20	SS	>50	10														Grout	
			(ML) SILT; grey, varved with silty clay; non-cohesive, wet, hard.		710.72 17.07	21	GS SS	42																
						23	GS		11										O NP					
			CONTINUED NEXT PAGE			24	ss	>50	12															
ID .	: 5(* Note: Split-Spoon sampling and recorded b within a sonic cored borehole, a method whic with ASTM standards. Caulion and judgmen exercised in the interpretation of the measure correlation with standard "N" values.	ch does ht should	not strictly o d therefore b	comply be			C	3	οL	. D	E	R		IL CL	ASSIF	ICATI	l	STEM: (_OGGE Equires:	D: FC		21-011 F age 70	1 1

		۲ No.: 19122805 / 7000 Coastal GasLink		REC	OR	DO	F S	SON	IIC	нс	DL	E:	BH	20-	MO	R-0)3						3 OF 5 Ground Surface	e
PROJ LOCA		 Norice River Geotechnical Investigation Houston BC, KP 558+440 606354.010 													cemb ud Baj		20 ling Co	o. Ltd.			571			•
Survey	Provi	ded by: McElhanney						ION:			_		CRAI	DATIO	201.0/			DOTO					ER, 64kg; DROP	
S ALE RIG	THOL	SOIL PROFILE	F		SA	MPLE		sc	DIL CO	ORE	_	CLA	Y PART	ICLE SI	JN % ZE <= 0.	002	Cu, kl	Pa	ENGTH		- Q - ● → U - ● t Pen ■ 30	NG	PIEZOMET STANDPII OR	
DEPTH SCALE METRES DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN		OVER		GRAVEL	SAND	FINES	SILT	CLAY	WA Wp			T PERC		ADDITION LAB. TEST	THERMIST	
20		(ML) SILT; grey, varved with silty clay; non-cohesive, wet, hard. (continued)		705.55	25	GS		12										0						
- 23	-	 (SP) SAND, fine to medium sand, trace non-plastic fines; brown; non-cohesive, wet, inferred compact to dense. (ML) gravelly sandy CLAYEY SILT, fine to coarse sub-angular to rounded gravel, fine to coarse sand; grey; cohesive, w<pl, hard.<="" inferred="" li=""> </pl,>		22.25	26	SS	20	13				27	20	53	44	9		0						
- 24 	Sonic (Casing:152 mm;)	(ML) sandy gravelly SILT, fine to coarse sand, fine to coarse sub-rounded to rounded gravel; grey; non-cohesive, wet, inferred very dense.		703.57 24.23								1											Grout	
- 26 - 26 		Highly weathered (W4), dark grey, fine grained, weak (R2), inferred CLAYSTONE.		701.74 26.06	28	GS		14																
- 28 - 28 - 28 - 29 - 29 - 29 - 29 - 29 29 		Bedrock Encountered. Refer to		699.45	29	GS		16																
- 30		Record of DRILLHOLE log for continuation of rock description.																						
DEPT 1 : 5		* Note: Spill-Spoon sampling and recorded bic within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measured correlation with standard "N" values.	n does should	not strictly o therefore b	comply be			C	G (C	L	D	E	R		IL CI	ASSIF	CATIO		OGGE	D: FC		21-011 age 71	REV: 1

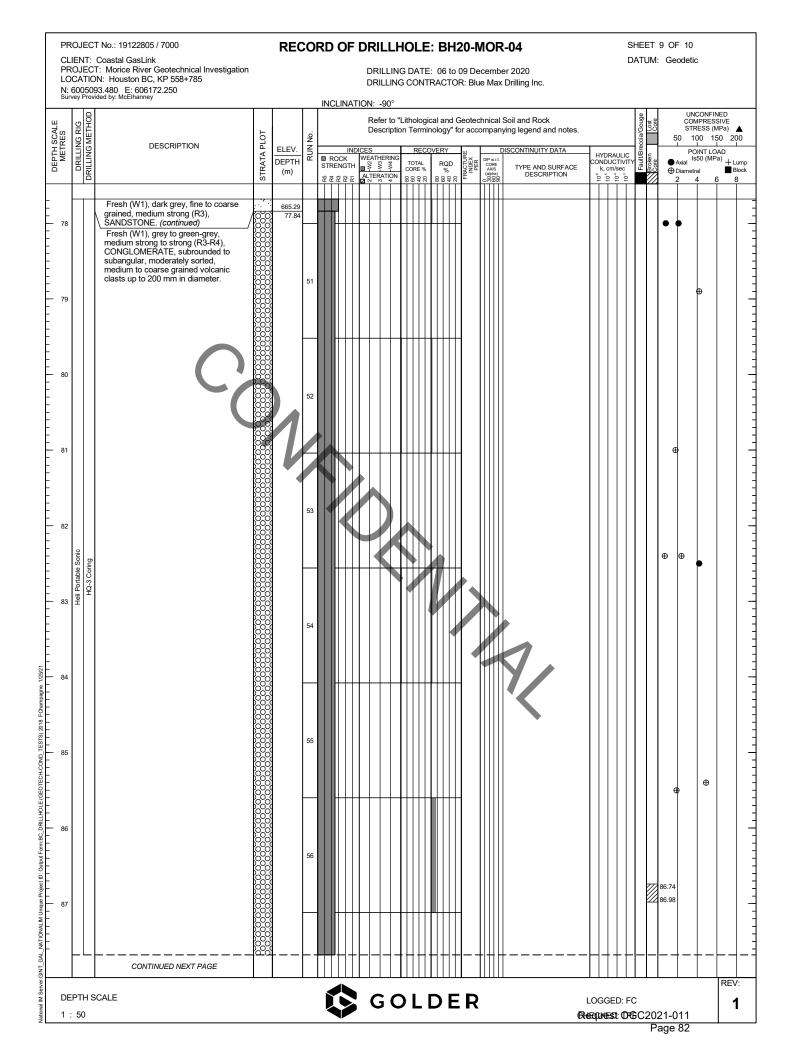

			F No.: 19122805 / 7000 Coastal GasLink		RECC	DR	d of	F DF	RILL	HO	LE:	Bł	120-	MO	R	-03				HEE				Surface	
PF LC	ROJ	EC TIC	T: Morice River Geotechnical Investigation N: Houston BC, KP 558+440													er 2020 Drilling Co. Ltd.			L	AIU	IVI.	GIU		unace	
N: Sur	rvey	Provi	00.640 E: 606354.010 ded by: McElhanney				NCLINA		: -90°											1.1				ONFINE	
CALE	RIG	DRILLING METHOD		DT .												Soil and Rock ying legend and notes.				cia/Gouge	Core	50	COM STR	ONFINE PRESSI ESS (MP 0 150	:D VE 2a) ▲
DEPTH SCALE METRES	SILLING	LING M	DESCRIPTION	STRATA PLOT	ELEV.		ROCK	UDICES		F G TOT			EXE		D v.r.t.	DISCONTINUITY DATA	H,			Brec	Ð	- 1			
B	ä	DRIL		STR/	(m)		STRENGTI 222222	H ALT Z Z			RE %	RQE % 889			RE IS ha) 096	TYPE AND SURFACE DESCRIPTION	10°	k, cm/	STIVIT	Fa		⊕D 2	iametra	I	Block 8
- 40			Fresh (W1), grey, strong (R4),	000										╫			+	+						_	-
			CONGLOMERATE, subrounded to subangular, fine to coarse grained volcanic clasts up to 115 mm in		25	5																			
-			diameter. (continued) (continued)																						
- 41																							€		-
-						1										JN,UN,Ro								₿	
-															┝║	JN,UN,Ro									
- 42			\frown		26	6																•	,		-
																JN,PL,SM						ſ	€		
-	e Sonic	oring	-(
- 43	Heli Portable Sonic	HQ-3 Coring																							-
-	He																								
-					27																				
- 44																									_
- -							H														•	⊕	•		
-										N													•		
_ 					28	в						1										e	€		_
-					682.11																				
- - 46			End of DRILLHOLE.		45.69											1									-
																Y/									
																X									
2 - 2 - 2 - 47																•									_
																									_
- 49																									
	1												 												REV:
0	EPT : 5		CALE					5 (GC	DI	_ [)	ER	2					C/CI	н БС2	02	1-0 [.]	11		1
z																	-T"				Pa	ge	73		

CL	IEN	IT:	No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	DF S																1 OF 10 : Geodetic	
LC	DCA	TIO	 Morice River Geotechnical Investigation N: Houston BC, KP 558+785 13.480 E: 606172.250 ded by: McElhanney 											5 to 0 CTO)20 illing In	C.						
	-		ded by: McElhanney SOIL PROFILE				INCL AMPLE)° CORI	E	CL/	GRA AY PART	DATIC TICLE SI	DN % ZE <= 0	002	SHEA Cu, kF		ENGTH	nat V. +	Q - •		ER, 64kg; DROP, PIEZOMET STANDPIF	TER,
DEPTH SCALE METRES	DRILLING R	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.		<u>8 </u>		GRAVEL	SAND	FINES	SILT	CLAY	WA Wp			T PERCI	WI	ADDITIONAL LAB. TESTIN	OR THERMIST INSTALLAT	
- 0 		Hand Excavation	Ground Surface SUMP. Assumed minimal thickness of forest litter and top soil, underlain by gravelly SAND.		743.13																				
			(SP-SM) gravelly SAND, fine to coarse sand, fine to coarse sub-angular to sub-rounded gravel, some non-plastic fines; brown; non-cohesive, dry, dense.		741.91	1	GS SS GS	35	1									0							
- - - - - - - - - - - - - - - - - - -		-			3,20 739.17 3.96	4	GS	29										0							
- 5 6 6	Heli Portable Sonic	Sonic (Casing:127 mm;)	(GP-GM) GRAVEL, fine to coarse		736.58		GS SS GS	27	3 4				53	47	0			0						Grout	
			sub-rounded to rounded gravel, some fine to coarse sand, trace to some non-plastic fines; brown; non-cohesive, wet, inferred compact to dense. (SC) gravelly CLAYEY SAND, fine to coarse sand, fine to coarse sub-angular to sub-rounded gravel; grey-brown; non-cohesive, wet, hard. - chlorite alteration at approx. 7.6 m depth		736.12 7.01	9 10 11 12 13	GS SS GS GS SS	>50	5				25	53	22	16	6			Φ					
	_		CONTINUED NEXT PAGE			14	GS		6	_										0			-		
	EPT : 50		* Note: Split-Spoon sampling and recorded bio within a sonic cored borehole, a method which within ASTM standards. Caution and judgment exercised in the interpretation of the measured correlation with standard "N" values.	does should	not strictly d therefore i	comply be			(3	0	L	D	E	R	SC	OIL CI	LASSIF	ICATI	I	STEM: (_OGGE	D: FC		21-011 age 74	REV: 1

CGL4703-GALV-GT-RP-0035

CL	IEN.	NT:	Г No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	DF S	SOI	VIC	; H	OL	.E:	BH	20-	MC)R-()4							2 OF 10 Geodetic	
LO	CA	ATIO	F: Morice River Geotechnical Investigation N: Houston BC, KP 558+785										E: 05 ITRA					20 Iling Ir	IC.							
Sur	_		03.480 E: 606172.250 ded by: McElhanney				INCL							GRA		ON %		QUE		PENGT					R, 64kg; DROP PIEZOME1	
CALE	RIG	ETHOI	SOIL PROFILE	5					s	OIL C	ORE	-		Y PART	TICLE SI	ZE <= 0	.002		AR STF Pa		Po	cket P	U - O Pen	ONAL	STANDPI	
DEPTH SCALE METRES	DRILLING	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN No.	REC	8 6 %		GRAVEL	SAND	FINES	SILT	CLAY	W/ Wp	20 ATER C 10		60 NT PE W NP - 1 30		NT WI Plastic	ADDITIO LAB. TES	THERMIST INSTALLAT	
10 						15	SS	>50													_					
- - - - - - - - - -			 (CL) sandy SILTY CLAY, fine to coarse sand, some fine to coarse sub-angular to sub-rounded gravel; grey, with weathered rock fragments; cohesive, w<pl, hard.<="" inferred="" li=""> - oxidation staining observed between 11.1 and 11.4 m depth. </pl,>		732.77	16	GS		7																	
- - - - - - - - - - - -			(CI) SILTY CLAY and SAND, fine to coarse sand, trace fine to coarse sub-angular to sub-rounded gravel; grey; cohesive, w>PL, hard.		731.55 11.58	17	GS		8				2	46	52	33	19		 F	0-						
- 13 - 13 	Heli Portable Sonic	Sonic (Casing:127 mm;)	Fresh (W1), grey, coarse grained, medium strong (R3),		728.80 14.33	18	SS	_>50_	9																	-
- 15 - 15 			medium ströng (Ŕ3), CONGLOMERATE.			20	GS	=>50=					1					1							Grout	-
- - - - - - - - - - - - - - - - - - -			Fresh (W1), grey, fine to coarse grained, medium strong (R3), SANDSTONE.		726.98		GS		10																	-
- - - - - - - - - - - - - - - - - - -		1	Bedrock Encountered. Refer to Record of DRILLHOLE log for continuation of rock description.		725.45																					-
19 20																										-
DE 1 :			* Note: Split-Spoon sampling and recorded bil within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measure correlation with standard "N" values.	h does should	not strictly of therefore l	comply be			(G	0	L	D	E	R		DIL CI	ASSI	FICAT		LOG	GED	: FC	202	1-011 Ige 75	REV: 1

CLIEN PROJ	NT: IEC	T No.: 19122805 / 7000 Coastal GasLink T: Morice River Geotechnical Investigation N): Houston BC, KP 558+785		REC	COI	rd of I	DRILI	LING	DATE	06 to	o 09 De	cemb	er 2020					3 OF : Geo			
N: 600 Survey	050 Prov	33.480 E: 606172.250 ided by: McElhanney				INCLINATI	<u>ON: -9</u> Refer	0° • to "Lit	hologia	al and	Geotec	hnical	Corilling Inc.			egue	ost		UNCC	NFINED RESSIVI) E
DRILLING RIG	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	RUN No.	INDI INDI ROCK STRENGTH 운 환 윤 윤 동		RING	Termir RECC TOTAL XORE %		ACTURE INDEX PER		DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	к,	RAULIC DUCTIVIT cm/sec	-≺ I Fault/Breccia/Gouge	Broken Lo Core	5(● A ⊕ □ 2	0 100 POIN Is50 Diametral	150 T LOAD (MPa)	200
18		Cont'd from Record of Sonic Hole. Fresh (W1), grey, medium strong (R3), CONGLOMERATE, subrounded, moderately sorted, fine to coarse grained volcanic clasts up to 17 mm in diameter.		725.45	11			4 00										17.68 17.84			
19 20		C			12						_		JN, UN, SM, CN					₽			
21				1	13						-								•		
22 Heli Portable Sonic	HQ-3 Coring				14													•	⊕ €		
24 25					15								Z								
26		- becomes weak (R2) slightly to moderately altered (A2-A3), fine grained, and yellow-grey from 26.08 to 26.24 m depth			16													•	Φ	Ð	
27		CONTINUED NEXT PAGE			17							• • •	JN,IR,VR,IN,Fe, CI, Gr						· — —		
DEPT 1 : 50		SCALE		-		\$	G	0	LI	DE	ER				GED: F Est: Of		:202 P:	21-0 age	<u>11</u> 76	R	1



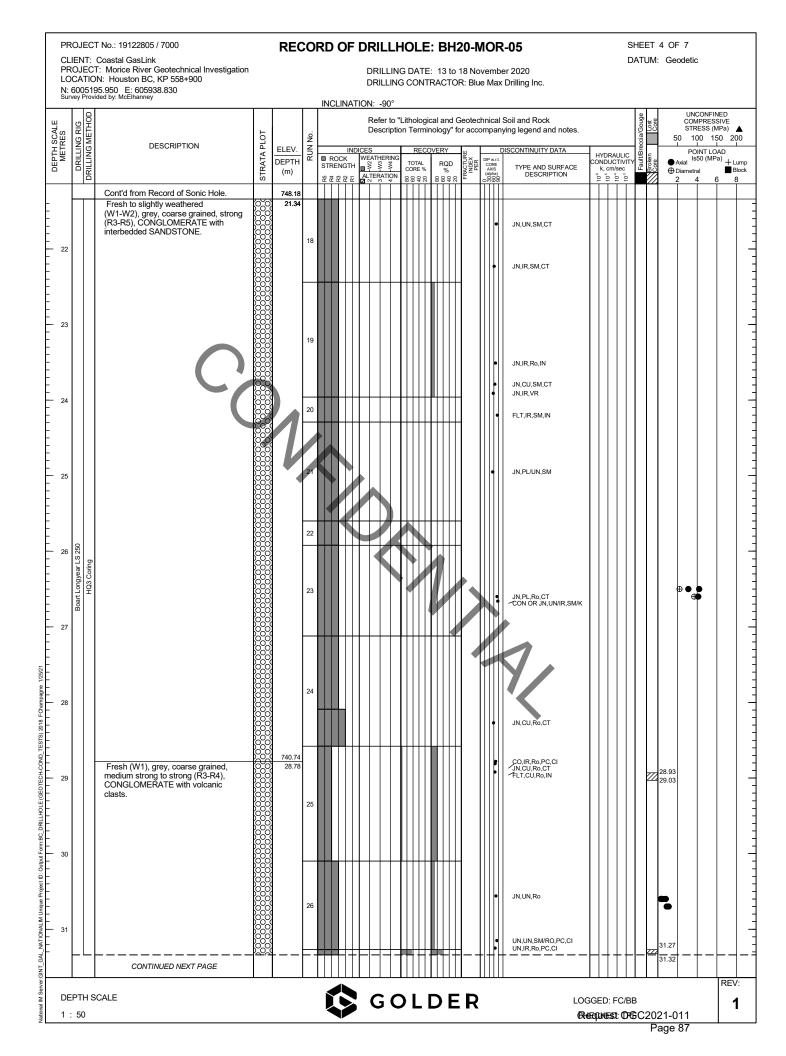
PROJECT No.: 19122805 / 7000 CLIENT: Coastal GasLink PROJECT: Morice River Geotechnical Investigation LOCATION: Houston BC, KP 558+785	RECORD OF DRILLHOLE: BH20-MOR-04 DRILLING DATE: 06 to 09 December 2020 DRILLING CONTRACTOR: Blue Max Drilling Inc.	SHEET 5 OF 10 DATUM: Geodetic
N: 6005093.480 E: 606172.250 Survey Provided by: McEihanney UDP DI	Inclination: -90° Performance Refer to "Lithological and Geotechnical Soil and Rock Description Terminology" for accompanying legend and not model DEPTH (m) Performance Indices Refer to "Lithological and Geotechnical Soil and Rock Description Terminology" for accompanying legend and not model Discontinuity Data Indices Recovery Performance Indices Total Cores Rob Rock Rock Discontinuity Data Indices Recovery Performance Indices Total Rock Rob Rock Discontinuity Data Indices Recovery Performance Indices Total Rock Rob Rock Discontinuity Data Indices Recovery Performance Indices Total Rock Rock Discontinuity Data Indices Recovery Performance Indices Total Rock Rock Discontinuity Data	B 50 100 150 200 HYDRAULIC CONDUCTIVITY B POINT LOAD Ace Axial Is50 (MPa) + Lump Ace Korker Book Point Load
Image: Big in the second se	See 0 DEPTH If DECMH WEATHERING DORUS, Read Read See 20	ACE K, cm/sec k, cm/sec k
- 47 - 47 - 47 - 47 - 47 - 47 - 47 - 47	30 695.99 47.14 30 695.99	
DEPTH SCALE 1 : 50	GOLDER	LOGGED: FC REV: Стериезт: ОТВС2021-011 1 Раде 78 2

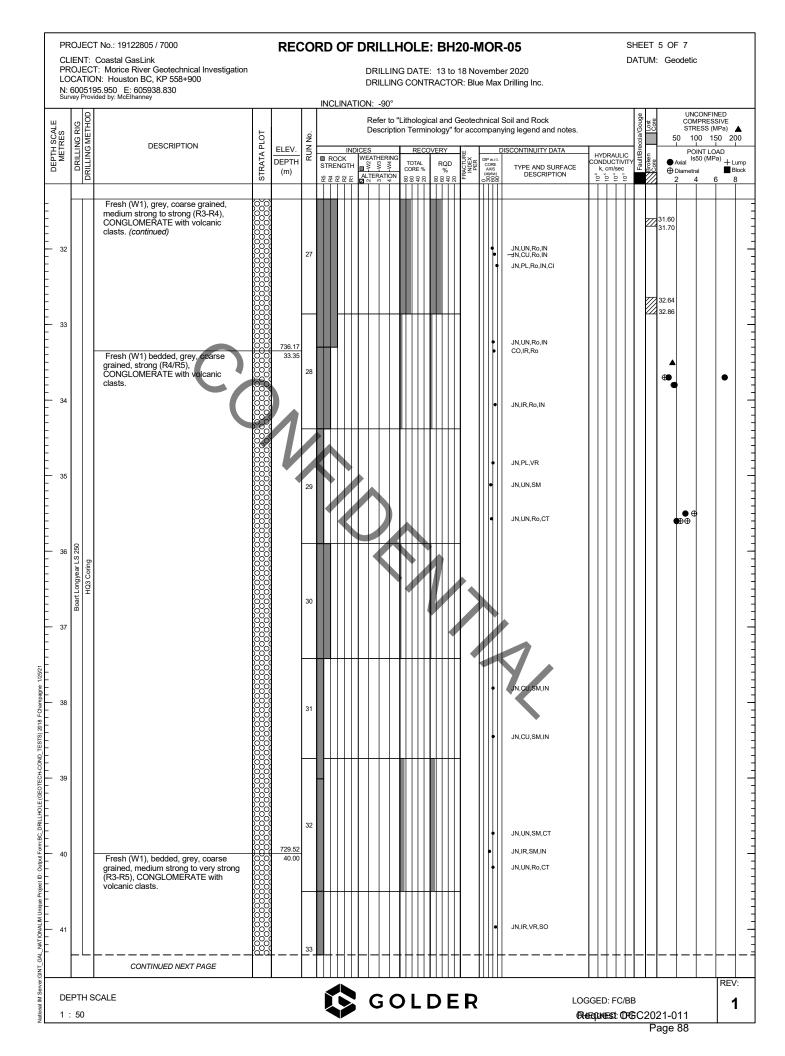
PROJECT: Monc LOCATION: Hou: N: 6005093.480 Survey Provided by: Mo	e River Geotechnical Investigation ton BC, KP 558+785 E: 606172.250 Elhanney DESCRIPTION					DRILLIN						er 2020						
									CIUF	R: Blue	e Max	k Drilling Inc.						
G RIG	DESCRIPTION					N: -90°	"I ithol	ngingl	and C	ootool	hnicol	Soil and Back			ge		UNCONFI	NED
	DESCRIPTION	-o1		2		Descript	ion Ter	minolo	and G ogy" fo	r acco	ompar	Soil and Rock hying legend and notes.			ccia/Gouge	Core	COMPRES STRESS (1 0 100 1	1Pa) 🔺
	BEGORA HON	STRATA PLOT	ELEV.		INDICE K W	ES (EATHERING	G TOTA		RQD	ACTURE NDEX PER		DISCONTINUITY DATA	HY	DRAULIC	Bre		POINT LC Is50 (MF	a) + Lump
		STR	(m)	8888	212 1 2		CORE		20 %	PRAC N	DIP w.r.t. CORE AXIS (alpha)	DESCRIPTION	10°	, cm/sec			Diametral	Block
48 Subro sortec volcar	(W1), grey, medium strong to (R3-R4), CONGLOMERATE, inded to subangular, moderately medium to coarse grained ic clasts up to 150 mm in ter. (continued)		3								•	JN,PL,Ro,IN,CI				48.24 48.42 48.46 48.86 48.86		
25 Et Hell Portable Sonic H. Portable Sonic H.Q.3 Corhg				15								Z				•	⊕ ⊕	
55	CONTINUED NEXT PAGE			16 17							•	JN,PLSM.SO ~JN,PL,SM.SO JN,IR,IR,CN						
DEPTH SCALE						GC	ייי רר			P				GED: F	 =c			REV:
1 : 50						50		. ບ				(eest: O	GC2	021-0 Page		1

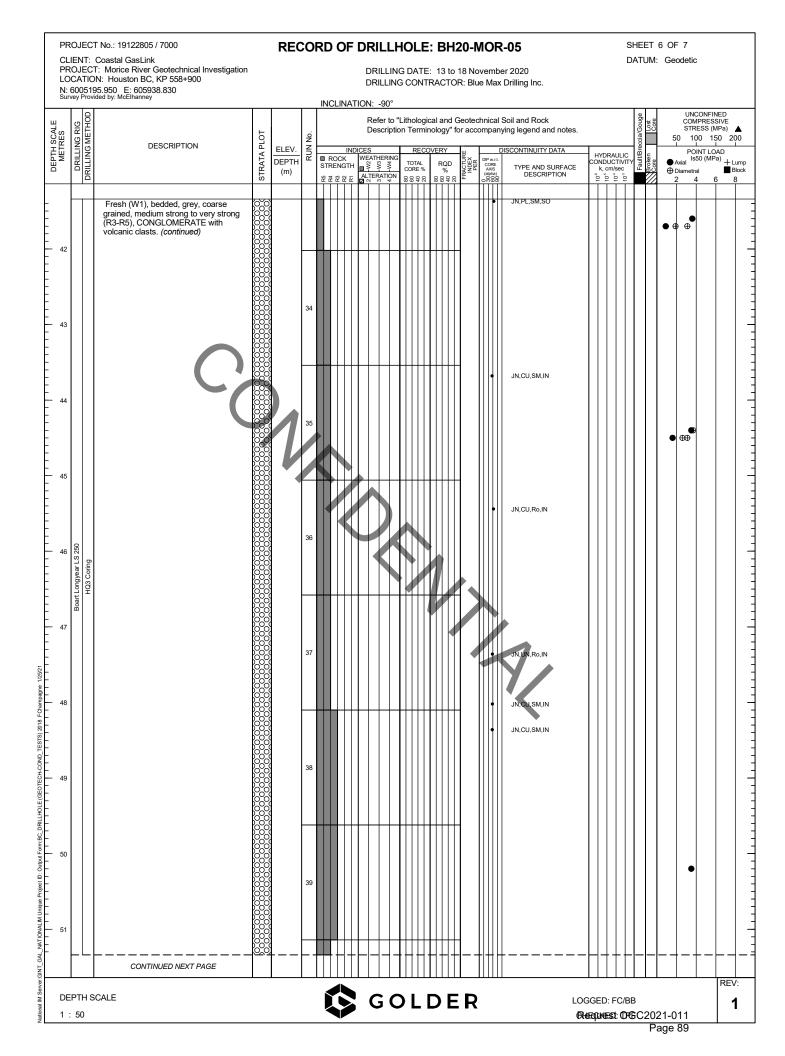
LOCATION: Hous	GasLink River Geotechnical Investigation ton BC, KP 558+785	REC	CORD OF	DRILLH DRILLING DRILLING	DATE: 0	6 to 09 De	cembe	r 2020			7 OF 10 : Geodetie	c
N: 6005093.480 E Survey Provided by: Mcl MELLEES DBLIFTING KIC DBLIFTING KIC	DESCRIPTION	STRATA PLOT (W) (W)	· ON N N N N N N N N N N N N N N N N N N		Terminolog RECOVER	gy" for acco	ompanyi	Soil and Rock ing legend and notes. SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	HYDRAULIC CONDUCTIVIT k, cm/sec b b b c c conductivity	Fault/Breccia/Gouge Broken Lost Core	CON STF 50 1 PC Axial Is Diameter	CONFINED MPRESSIVE XESS (MPa) ▲ 00 150 200 1 1 DINT LOAD 50 (MPa) + Lump ral ■ Block 4 6 8
58 Fresh strong subrou sorted volcan diamet	(W1), grey, medium strong to (R3-R4), CONGLOMERATE, nded to subangular, moderately medium to carse grained c clasts up to 150 mm in er. (continued) (W1), very thinly bedded to ted, green-grey, fine to coarse it, medium strong (R3), STONE. mes coarser between 64.58 to n and 64.96 to 65.05 m depth. (W1), grey to grey-green, n strong to strong (R3-R4), LOMERATE, subrounded to jular, moderately sorted, c clasts up to 75 mm in er. s become finer between 66.85 0 m depth.										63.58 63.68	
DEPTH SCALE				GO	LD	ER			LOGGED: F		21-011	REV:

			- No.: 19122805 / 7000 Coastal GasLink		REG	co	rd of	DRI	LLF	IOL	.E:	BH	20-N	10	R-04					IEET		F 10		
PF LC	ROJE	ECT FIOI	: Morice River Geotechnical Investigation N: Houston BC, KP 558+785												ber 2020 ax Drilling Inc.				DA		. ७८	Jucil		
Su			3.480 E: 606172.250 ded by: McElhanney			_		ION:	-90°										_	0			CONFIN	
CALE	DRILLING RIG	IETHO[01		No.									al Soil and Rock Inying legend and note	s.			9	ia/Gouge Lost Core	5	CON STR	MPRESS RESS (M	SIVE 1Pa) 🔺
DEPTH SCALE METRES	SILLING	LING N	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	RUN	ROCK	WEAT	HERING	RE TOTA			E E E E E E E E E E E E E E E E E E E	DIP w.r.	DISCONTINUITY DATA	_	HYD	RAULI		Fault/Brecc Broken Core		PO		
DE	Ы	DRIL		STRA	(m)		STRENGTH 윤환윤윤균			CORE 8889	%	RQD %	FRACTU INDEX PER	CORE AXIS (alpha)	TYPE AND SURFAC	E	k, c	m/sec		Ero Cor	•	Diametra		Block
F	\vdash	+	Fresh (W1), grey to grey-green,		2						+					_	-		+	—		-	$\left \right $	
- - 68			medium strong to strong (R3-R4), CONGLOMERATE, subrounded to subangular, moderately sorted,			44															⊕			
-			volcanic clasts up to 75 mm in diameter. <i>(continued)</i>																					
-																								
- 69					¢	-																		
-						45																		
			- red-grey between 69.72 to 69.86 m			40																		
— 70 —			depth.																					
_																								
-																								
- - 71 -						16																		
-						40	ND																	
-																								
- - - 72						-					+	+									•	•		
-	Ŀ,							H																<i>•</i>
_	able Son	HQ-3 Coring				47			N															
		НQ-3									11													
- 73 -	т																							
						-																		
-																								
- 74						48																		
_						40																		
E																								
- 75					667.97	_																		
-			Fresh (W1), dark grey, fine to coarse grained, medium strong (R3),		75.16 667.71																			
		ſ	SANDSTONE. / Fresh (W1), dark grey-green, madium strong (P2)		75.42	49																		
- - - 76			medium strong (R3), CONGLOMERATE, subrounded, poorly sorted, medium to coarse		¢	45																⊕		
			grained volcanic clasts up to 100 mm		76.17																œ₽			
-			Fresh (W1), dark grey, fine to coarse grained, medium strong (R3), SANDSTONE.		666.66 76.47	-		\mathbb{H}	$\left \right $	$\left \right \right $	+	+	-											
			Fresh (W1), dark grey-green, medium strong (R3), CONGLOMERATE, subrounded,																					
77 			CONGLOMERATE, subrounded, poorly sorted, medium to coarse grained volcanic clasts up to 100 mm		665.88	50																		
			in diameter.		77.25																			
_	۴I	-+		·	+		┣╋╋╃┥┼	- -	- -	╏┝┥┥	┥╄┥	+	-	╞╢┿┥	₩	·		++.	+	- -		<u> </u>	┝╼┝	
	L			L	1	1						<u> </u>							L			<u> </u>	<u> </u>	REV:
	EPTH : 50		CALE					C	ςC) L	. C) E	R					GED:		C20	21-0)11		1
<u> </u>																2.04	-10.0	4			age			L

0 Freid (W1), gray to generative, gray make an end of the constraint of the cons	CLIENT:	CT No.: 19122805 / 7000 : Coastal GasLink CT: Mariae Biver Contemporal Investigation	RECORD OF DRILLHOLE: BH			10 OF 10 : Geodetic	
Bertin Libbours Bertin Lib	LOCATIO	ON: Houston BC, KP 558+785	DRILLING CONTRACT				
- -	SCALE RES NG RIG	DESCRIPTION	Description Terminology/	for accompanying legend and notes.	sccia/Gouge Lost Core	COMPRESSIVE STRESS (MPa) 50 100 150	E) ▲ 200
m module storag spring (S-H4), module storag	DEPTH MET DRILLIN DRILLING		LLEV. C DEPTH (m) (m) 문호 환호 전 ALTERATION 용 유유 응용 응용		HYDRAULIC CONDUCTIVITY k, cm/sec	POINT LOAD Axial IS50 (MPa) Diametral 2 4 6	Lump Block
		Fresh (W1), grey to green-grey, medium strong to strong (R3-R4), CONGLOMERATE, subrounded to subangular, moderately sorted, medium to coarse grained volcanic clasts up to 200 mm in diameter. (continued)		R Image: Constraint of the second s			
DEPTH SCALE LOGGED: FC LOGGED: FC 1 1 : 50 LOGGED: FC 1 Page 83		SCALE	🚯 GOLDE	ER	Receivest: OGC202	21-011	


CLI PRO LOO	EN DJI CA	ECT No.: 19122805 / 7000 IT: Coastal GasLink ECT: Morice River Geotechnic TION: Houston BC, KP 558 5195 950 E: 605938.830 Provided by: McEihanney	al Investigation)0	REC				DRIL DRIL	_LING _LING	i DAT	Έ: 1	3 to 1	8 No	vemb	er 20		2.		*C AMD	DA	ΓUM:	1 OF 7 Geodetic	760mm
ш	c)	SOIL I	PROFILE		1				90 L COR	RE	CL/	GRA AY PART	DATIO	ON % ZE <= 0.	002	SHEA Cu, kł		ENGTH	nat V. 			ER, 64kg; DROP, 7 PIEZOMETEI STANDPIPE	R,
DEPTH SCALE METRES	DRILLING RIC	CO SOIL I SOIL I DESCRIPTIO	Z STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RUN	ECOV		GRAVEL	SAND	FINES	SILT	CLAY	2 WA Wp	0 TER C	40 6 ONTEN OW N	Pocke 50 8 T PERC P - Non	t Pen 📕 80		THERMISTOL	R
0 . 		Ground Surface (SM) SILTY SAND and C to coarse sand, fine to cc sub-rounded to sub-angu brown, with oxidation and non-cohesive, wet, inferre	arse lar gravel; rootlets;	769.52	1	GS		1															-
- 2 - 2 - 2 		(SM) gravelly SAND and coarse sand, fine to coar sub-rounded to sub-angu brown, with oxidation; no wet, compact. (SM) gravelly SILTY SAN coarse sand, fine to coar sub-rounded to sub-angu brown; non-cohesive, we	se lar gravel; n-cohesive, D, fine to se lar gravel;	768.00 1.52 767.69 1.83	2A	SS	25	2			26	51	23	19	4	·	D						
- 4 - 4 - 5 - 5		(SM) gravelly SAND and coarse sand, fine sub-rous sub-angular gravel; brow non-cohesive, wet, inferr dense.	nded to	765.25	4	GS GS GS	>100	4								0	D					Grout	
- 6 6 		- cobble at 6.10 m depti (CL) gravelly sandy SILT to coarse sand, fine to cc sub-rounded to sub-angu grey; cohesive, w <pl, ha<br="">- cobble at 6.70 m depth</pl,>	Y CLAY, fine arse lar gravel; rd.	6.10	8	SS GS	>100	5															
- - - - - - - - - - - - - -		(CL) SILTY CLAY, some coarse sand, some fine t sub-rounded to sub-angu grey; cohesive, w <pl, ha<="" td=""><td>o coarse lar gravel;</td><td>761.90 7.62</td><td>10</td><td></td><td>38</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	o coarse lar gravel;	761.90 7.62	10		38	7															
- - - - - - - - - - - - - - - - - -		- some sand to sandy b depth.	elow 9.14 m	759.77 9.75	11	GS SS	77	8								·	0						
- 10	_ l			4	<u> </u>	-+	-	-+·	+ -	+-	+-	\vdash						-	+	+	┼─┝		
DEI 1 :		* Note: Split-Spoon san within a sonic cored bor with ASTM standards. exercised in the interpre	pling and recorded blow co ehole, a method which doe Caution and judgment sho tation of the measured blo	es not strictly out the strictly of the strict of the stri	comply be			G	i 0	►	. D	E	R	SC	IL CI	ASSIF	ICATI		OGGE	D: FC	∟⊥ C202	R 21-011	rev: 1


Page 84


CGL4703-GALV-GT-RP-0035

CLIE	ENT:	T No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	DF S															2 OF 7 Geodetic	
LOC	ATIC	T: Morice River Geotechnical Investigation NI: Houston BC, KP 558+900 95.950 E: 605938.830 ided by: McEihanney							LING							20 Iling In	C.						
								ION: -			_	GRA	DATIO	N %		SHE			*SAMP nat V. +		AMME	ER, 64kg; DROP PIEZOMET	
	THO	SOIL PROFILE	F			MPLE		SOI	L COF	RE		AY PART	FICLE SI	ZE <= 0.	.002	Cu, k	Pa		rem V.€ Pocke	🖯 U - 🛈 t Pen 📕	LING	STANDPI	
METRES	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	.on NUR	ECOV %		GRAVEL	SAND	FINES	SILT	CLAY		ATER C		T PERC	BO ENT I WI	ADDITION LAB. TEST	THERMIST	
5 C	DRIL		STR	(m)	Ż		BLO		0.00	<u>5</u>	Ŭ							N	IP - Non	-Plastic 40			
10	_	(CL) sandy gravelly SILTY CLAY, fine																					
		to coarse sand, fine to coarse sub-rounded to sub-angular gravel;			13	GS		8								с							
		grey, with weathered rock fragments; cohesive, w <pl, <i="" hard.="">(continued)</pl,>																					
					14	SS	>50																
11								9															
		- 150 mm in diameter cobble at																					
		11.28 m depth.		1	15	GS		10															
40								10															
12					16	° °	65																
			K		16	SS	- 55																
		_																					
13				Л	17	GS		11								c	—	4					
					18	SS	54																
14				1																			
						4		12															
050	(:mm ;				19	GS										C							
15	ing:152																					Grout	
15	Sonic (Casing:152 mm;								Ť														
č	Soni																						
16					20	GS		13			22	35	43	26	17	7							
					21	SS	52										þ						
17				1																			
					22	GS		14									0 H	+-1					
								14															
18																							
								\vdash															
19				750.32	23	GS		15									0						
		inferred BEDROCK, highly to moderately weathered (W3-W4),		19.20	24	GS																	
		grey-green to grey, CONGLOMERATE.																					
20				¢	25	SS	53	16			1_						<u> </u>		L	<u> </u>			
-		CONTINUED NEXT PAGE																					
DEP	TH S	* Note: Split-Spoon sampling and recorded bit within a sonic cored borehole, a method which SCALE with ASTM standards. Caution and judgment	h does	not strictly of	vlamoc			^	C					SO	OIL CI	ASSI	FICATI		STEM:				REV:
1:		exercised in the interpretation of the measure correlation with standard "N" values.	d blow	counts and	their			G	U	L	. U		. К								202	21-011	1
																						age 85	

			T No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	OF S	SON	VIC	но	LE:	BH	20-	MO)R-()5						3 OF 7 : Geodetic
PI L(RO OC/	JEC ATIC	T: Morice River Geotechnical Investigation N: Houston BC, KP 558+900									NTE: 1					20 Iling In	C.			Diri		000000
N Su	_		95.950 E: 605938.830 ded by: McElhanney			_	INCL	.INAT	ION:	-90°													ER, 64kg; DROP, 762mm
ш	Ľ	HOD	SOIL PROFILE			SA	AMPL	ES	S		ORE	СІ	GRA AY PAR	DATIC TICLE SI	DN % ZE <= 0.	.002	SHEA Cu, kl	R STR Pa	ENGTH	Inat V. rem V.€	- Q -● Ə U - ● t Pen ■	0	PIEZOMETER, STANDPIPE
DEPTH SCALE METRES		DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN No.		8 9 8 %	GR/	SAND	FINES	SILT	CLAY	WA Wp			60 IT PERC / IP - Non	80	ADDITION AB. TEST	OR THERMISTOR INSTALLATION
- 20	, _		informed REDDOOK highly to					53															
- - - - - - - - - - - - - - - - - - -	Boart Lonovear LS 250	Sonic (Casing:152 mm;)	inferred BEDROCK, highly to moderately weathered (W3-W4) , grey-green to grey, CONGLOMERATE. <i>(continued)</i>		748.18				16 17														
- - - - - - - - - - - -	2		Bedrock Encountered. Refer to Record of DRILLHOLE log for continuation of rock description.		21.34																		
- - - - - - - - - - - - - -	3		C		1																		
- 24 - 24 								K															
- 25 - - - - - - - 26																	1						
- - - - - - - - - - - - - - - - - - -	,																						
	3																						
27 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20)																						
- - 30)																						-
D	EP ⁻ : 5		* Note: Split-Spoon sampling and recorded bit within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measured correlation with standard "N" values.	n does i should	not strictly o therefore b	comply be			<u>ا</u> ا	G		_ C) E	R	SC	DIL CI	ASSIF	 FICATI		STEM: LOGGE	D: FC	C20:	21-011 REV: 21-011 1 age 86

CL	ENT:	CT No.: 19122805 / 7000 : Coastal GasLink CT: Morice River Geotechnical Investigation		REC	CO	RD C)F													7 0 1: Ge		:	
LO	CATI 6005 ⁻ /ey Pro	ON: Houston BC, KP 558+900 195.950 E: 605938.830 vided by: McElhanney		1	_	INCLI	NATI	DRI	ILLIN							er 2020 Drilling Inc.							
DEPTH SCALE METRES	DRILLING RIG	DESCRIPTION	PLOT	ELEV.	RUN No.		INDI	Des		on Te		logy"			pany	Soil and Rock ring legend and notes.		DRAU DUCT	reccia/Gouge		CON STR	CONFINEI IPRESSIV ESS (MPa 00 150	/E a) ▲ 200
DEPTI	DRILL		STRATA PLOT	DEPTH (m)	RU	■ ROCI STRENO	K GTH			TOT	TAL E %	RQD			w.r.t. DRE XIS pha)	TYPE AND SURFACE DESCRIPTION	HY CON ¢	DRAU DUCT , cm/s 2 2	Fault/B	g ⊕	Axial Diametra) + Lump Block 8
	Boart Longyear LS 250 HO3 Caint	Fresh (W1), bedded, grey, coarse grained, medium strong to very strong (R3-R5), CONGLOMERATE with volcanic clasts. <i>(continued)</i>	Image: 1 Image: 1	709.52	40 41 42 43 44 45 46										• •	JN,UN,RO,IN JN,UN,RO,IN				52.78 53.21 ₽ 0 57.78 58.21			
- - - - - - - - - - - - -																							REV:
	РТН 50	SCALE						Ģ	GC		- C) E	ER	2				D: F((ES)	C20)21-()11		1
																			F	Page	90		

			T No.: 19122805 / 7000 Coastal GasLink		REC	OR	DC	DF S	SOI	VIC	нс	LE	: Bl	-120 -	-MC)R-(06						1 OF 1 Geodetic	
PF LC	RO. DCA	JEC ATIO	T: Morice River Geotechnical Investigation N: Houston BC, KP 559+200											ovemb OR: Bl			illing In	C.			DA	r oivi.	Geodelic	
N: Su	60 rvey	0532 Provi	21.120 E: 605671.630 ded by: McElhanney				INCL	INAT	ION:	-90°												AMME	ER, 64kg; DROP, 7	762mm
Ш	5	HOP	SOIL PROFILE			SA	MPLE	ES	s		ORE		GR CLAY PA	ADATI RTICLE S	ON % IZE <= 0	0.002	SHEA Cu, kl		ENGTH	nat V. rem V.€		-9	PIEZOMETE STANDPIPI	
DEPTH SCALE METRES	DRILLING F	DRILLING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	RUN No.		0VER % 3	145	SAND	FINES	SILT	CLAY	WA Wp			T PERC	WI	ADDITIONA LAB. TESTIN	OR THERMISTC INSTALLATIC	
- 0			Ground Surface	• • •	777.66																			
	Boart Longyear LS 250	Sonic (Casing:152 mm;)	Ground Surface (TOPSOIL) Mulch (CL-ML) gravelly sandy SILTY CLAY to CLAYEY SILT, low plasticity, fine to coarse sub-rounded to sub-angular gravel; brown, with organics, with cobbles; cohesive, w>PL. Fresh (W1), medium strong (R3), CONGLOMERATE. Fresh (W1), fine to coarse grained, carbonaceous fragments, SANDSTONE. Moderately weathered (W3), weak (R2), MUDSTONE. Fresh (W1), fine to medium grained, with carbonaceous fragments, SANDSTONE. Fresh (W1), fine to coarse grained, carbonaceous fragments, SANDSTONE. Fresh (W1), fine to medium grained, with carbonaceous fragments, SANDSTONE. Fresh (W1), fine to medium grained, with carbonaceous fragments, SANDSTONE. Fresh (W1), fine to medium grained, with carbonaceous fragments, SANDSTONE. Fresh (W1), fine to coarse grained, maroon alteration, weak (R2), MUDSTONE. Fresh (W1), fine to coarse grained, iron oxide staining on joint surfaces, weak (R2), SANDSTONE. End of Sonic Hole.		777.66 0.05 775.98 1.68 777.98 1.68 777.1.72 5.94 771.26 6.40 770.34 771.26 6.40 770.34 771.26 6.40 770.34 769.43 8.23			30	1 2 3 4 5 6									Ģ					Grout	
	EP1 : 5		* Note: Split-Spoon sampling and recorded bic within a sonic cored borehole, a method which with ASTM standards. Caution and judgment exercised in the interpretation of the measured correlation with standard "N" values.	h does should	not strictly of therefore l	comply be			(G) 	 _ [) De	ER	sc	DIL C	LASSIF	ICATIO	I	STEM: _OGGE	D: BB	2202	21-011 age 91	REV: 1

ON Soil Laboratory Results

Request OGC2021-011 Page 92

WATER CONTENT DETERMINATION

ASTM D 2216

Client:	Coastal GasLink
Project:	Morice River Geotechnical Investigation
Location:	Morice River, BC
Project No.:	19122805 Phase: 7000

Sample	Sample	Specimen	Depth	Interval	Water
Location	No.	No.	Depth (m)	Bottom (m)	Content (%)
BH20-MOR-01	4		3.05	3.66	11.2
BH20-MOR-01	5		4.27	4.42	8.9
BH20-MOR-01	9		7.62	8.05	10.8
BH20-MOR-01	16		14.33	14.48	2.6
BH20-MOR-01	26		25.91	26.06	8.8
BH20-MOR-01	31		32.92	33.07	21.4
BH20-MOR-01	32		35.05	35.20	26.3
BH20-MOR-01	34		40.84	41.00	26.3
BH20-MOR-01	35		44.20	44.35	22.4
BH20-MOR-01	41		59.44	59.59	7.7
BH20-MOR-01	42		63.09	63.25	7.5
BH20-MOR-02	2		1.83	2.44	7.0
BH20-MOR-02	3		2.90	3.05	7.4
BH20-MOR-02	6		4.42	4.57	4.2
BH20-MOR-02	8		5.64	5.79	6.7
BH20-MOR-02	9		6.40	6.53	18.6
BH20-MOR-02	12		8.53	8.69	20.9
BH20-MOR-02	14		10.21	10.36	21.8
BH20-MOR-02	17		12.50	12.98	26.3
BH20-MOR-02	18		13.56	13.72	22.5
BH20-MOR-02	23		17.68	17.83	23.0
BH20-MOR-02	24	-	18.59	19.05	23.5
BH20-MOR-02	26		21.64	22.17	25.5
BH20-MOR-02	27		23.16	23.32	27.2
BH20-MOR-02	30		26.82	26.97	8.5
BH20-MOR-02	33		30.02	30.18	5.6
BH20-MOR-02	35		32.61	32.77	4.9
BH20-MOR-02	36		33.68	33.83	4.1
BH20-MOR-02	38		36.58	36.73	18.2
BH20-MOR-02	41		42.06	42.21	14.4
BH20-MOR-02	45		46.02	46.18	8.9
BH20-MOR-02	46		48.16	48.31	14.9
BH20-MOR-02	47		49.07	49.23	13.6
BH20-MOR-03	5		4.72	4.88	2.9

Lab Schedule No.:

SJ Checked

1/29/2021

Date

WATER CONTENT DETERMINATION

ASTM D 2216

	GOLDER)
--	--------	---

l ab S	Schedi	ule N	0.:

Client:	Coastal GasLink
Project:	Morice River Geotechnical Investigation
Location:	Morice River, BC
Project No.:	19122805 Phase: 7000

Sample	Sample	Specimen	Depth	Interval	Water
Location	No.	No.	Depth (m)	Bottom (m)	Content (%)
BH20-MOR-03	8		6.55	6.71	25.6
BH20-MOR-03	13		9.30	9.45	3.4
BH20-MOR-03	14		10.06	10.64	5.8
BH20-MOR-03	17		12.34	12.50	7.6
BH20-MOR-03	19		13.87	14.02	5.7
BH20-MOR-03	21		15.85	16.15	21.3
BH20-MOR-03	23		17.98	18.29	20.0
BH20-MOR-03	25		21.03	21.34	17.4
BH20-MOR-03	27		23.47	23.62	15.3
BH20-MOR-04	2		2.44	3.05	7.1
BH20-MOR-04	4		3.51	3.66	5.7
BH20-MOR-04	6		4.88	5.03	5.7
BH20-MOR-04	8		6.10	6.25	5.2
BH20-MOR-04	13		8.53	8.69	20.1
BH20-MOR-04	14		9.30	9.45	23.7
BH20-MOR-04	17		12.34	12.50	21.7
BH20-MOR-05	3		2.44	2.59	10.7
BH20-MOR-05	4		3.05	3.51	10.0
BH20-MOR-05	5		3.66	3.81	8.5
BH20-MOR-05	7		5.18	5.33	10.7
BH20-MOR-05	9		7.01	7.16	10.3
BH20-MOR-05	11	-	8.53	8.69	10.6
BH20-MOR-05	12		9.14	9.75	13.2
BH20-MOR-05	13		10.21	10.36	8.0
BH20-MOR-05	17		12.98	13.11	8.7
BH20-MOR-05	19		14.48	14.63	8.3
BH20-MOR-05	21		16.76	16.86	10.9
BH20-MOR-05	22		17.37	17.53	12.1
BH20-MOR-05	23		18.90	19.05	12.0
BH20-MOR-06	1		0.61	0.76	17.4

nal IM Server.GINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB_WATER CONTENT (REPORT) 2018 SJohn 29/1/21		
IM Server:GINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB_WATER CONTENT (REPORT) 2018 SJohn	₽.	
IM ServerGINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB_WATER CONTENT (REPORT) 2018	John	
IM Server:GINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB_WATER CONTENT (REPORT	∞	
IM Server.GINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB_WATER CONTEN	(REPORT	
IM Server: GINT_GAL_NATIONALIM Unique Project ID: Output Form: _LAB_WATER	ONTEN	
IM Server.GINT_GAL_NATIONALIM Unique Project ID: Output Form:_LAB	VATER	
IM Server.GINT_GAL_NATIONALIM Unique Project ID: Output Form:	R	
IM Server:GINT_GAL_NATIONALIM Unique Project I	utput Form:	
IM Server:GINT_GAL_NATIONALIM Unique		
IM Server:GINT_GAL_NATIONALIM I		
IM Server:GINT_GAL_NATIONA	4 Uniqu	
IM Server:GINT_GAI	AN N	
IM Server:GINT	٩Ľ	
IM Server:		
	Server:	

SJ	1/29/2021	
Checked	Date	

MOIST	URE, ASH, AND ORGANIC	MATTER OF ORGANIC	SOILS	Reference(s) ASTM D2974
Client:	Coastal GasLink		Borehole: BH2	20-MOR-02
Project:	Morice River Geotechnical In	vestigation	Sample: 14	
_ocation:	Morice River, BC			21 - 10.36
Project No.:			,)-443
Method:	Method A		Other Remarks:	
Oven Tempe	erature 110±5°C			
Furnace Ten	nperature 440±40°C			
	Moisture Content %		21.8	
	Trial #			2
	Ash Content %	98.6	39	3.6
	Organic Matter %	1.4	1	.4
	Average Organic Matter	%	1.4	
	Note: moisture content as a perc	entage of oven-dried mass		
* The te	est data given herein pertain to a	the sample provided only. The of the data can be provide	his report constitutes a testing se ed upon request.	rvice only. Interpretation
	DC J	anuary 26, 2021	SJ	January 29, 2021
	TESTED BY	DATE	CHECKED BY	DATE

MOIST	URE, ASH, AND ORGANIC	SOILS	Reference(s) ASTM D2974			
Client:	Coastal GasLink		Borehole: BH:			
Project:	Morice River Geotechnical Inv	restigation	Sample: 26	Sample: 26		
_ocation:	Morice River, BC			Depth (m): 21.64 - 22.17		
Project No.:			,	Lab ID No.: B20-443		
Method:	Method A		Other Remarks:			
Oven Tempe	erature 110±5°C					
Furnace Ten	nperature 440±40°C					
	Moisture Content %	2.	25.5			
	Trial #			2		
	Ash Content %	98.7	98	3.7		
	Organic Matter %	1.3	1	.3		
	Average Organic Matter %	ó	1.3			
	Note: moisture content as a perce	entage of oven-dried mass				
* The te	est data given herein pertain to th	ne sample provided only. Th of the data can be provided		rvice only. Interpretation		
	DC Ja	anuary 26, 2021	SJ	January 29, 2021		
TESTED BY		-				

MOIST	MOISTURE, ASH, AND ORGANIC MATTER OF ORGANIC SOILS			Reference(s) ASTM D2974		
Client:	Coastal GasLink		Borehole: BH2	Borehole: BH20-MOR-02		
Project:	Morice River Geotec	nnical Investigation		Sample: 33		
Location:	Morice River, BC			Depth (m): 30.02 - 30.17		
Project No.:				Lab ID No.: B20-443		
Method:	Metho	od A	Other Remarks:	Other Remarks:		
Dven Temperature110±5°CFurnace Temperature440±40°C				Gravel retained on 4.75 mm screen removed prior		
			testing.			
	Moisture Conte	ent %	5.6			
	Trial #			2		
	Ash Content % 99.		99.5			
	Organic Matt	er% 0.5	0	.5		
	Average Organic	Matter %	0.5			
	Note: moisture content	as a percentage of oven-dried mass				
* The te	est data given herein pe	rtain to the sample provided only. of the data can be prov	This report constitutes a testing se ided upon request.	rvice only. Interpretation		
	DC	January 26, 2021	SJ	January 29, 2021		
TESTED BY		DATE	CHECKED BY	DATE		

MOIST	MOISTURE, ASH, AND ORGANIC MATTER OF ORGANIC SOILS			Reference(s)		
Client:	Coastal GasLink			ASTM D2974 Borehole: BH20-MOR-02		
Project:	Morice River Geotec	hnical Investigation	Sample: 4			
Location:	Morice River, BC			9.07 - 49.23		
Project No.:				20-443		
Method:		od A	Other Remarks:			
Oven Tempe				on 4.75 mm screen removed prior t		
Furnace Ten		40°C	testing.			
	(
	Moisture Cont	ent %	13.6			
	Trial # Ash Conter	nt % 97.		97.6		
	Organic Mat	ter % 2.3	3	2.4		
	Average Organic	: Matter %	2.4	•		
	Note: moisture content	as a percentage of oven-dried mass	5			
* The te	est data given herein pe	ertain to the sample provided only of the data can be pro	y. This report constitutes a testing s vided upon request.	service only. Interpretation		
	DC	January 26, 2021	SJ	January 29, 2021		

MOIST	URE, ASH, AND ORGANI	C MATTER OF ORGANI	C SOILS	Reference(s) ASTM D2974	
Client:	Coastal GasLink		Borehole: BH	Borehole: BH20-MOR-04	
Project:	Morice River Geotechnical	Investigation		Sample: 8	
Location:	Morice River, BC				
Project No.:				Lab ID No.: B20-443	
Method:	Method A		Other Remarks:		
Oven Tempe				4.75 mm screen removed prior t	
Furnace Ter			testing.		
	C				
	Moisture Content %		5.2	2	
	Ash Content %	99.3	9	9.3	
	Organic Matter %	0.7	C).7	
	Average Organic Matte	r %	0.7		
	Note: moisture content as a pe	rcentage of oven-dried mass			
* The te	est data given herein pertain to	o the sample provided only. of the data can be provi	This report constitutes a testing se ded upon request.	ervice only. Interpretation	
	DC	January 26, 2021	SJ	January 29, 2021	
TESTED BY				1	

MOIST	MOISTURE, ASH, AND ORGANIC MATTER OF ORGANIC SOILS			Reference(s) ASTM D2974	
Client:	Coastal GasLink		Borehole: BH2	Borehole: BH20-MOR-04	
Project:	Morice River Geotec	chnical Investigation		Sample: 14	
Location:	Morice River, BC		•	· ·	
Project No.:					
Method:		od A	Other Remarks:		
Nethod:Oven Temperature110±5°CJurnace Temperature440±40°C				Gravel retained on 4.75 mm screen removed prior testing.	
			00.7		
	Moisture Cont	ent %	23.7	2	
	Ash Conter	nt % 92.9	92	.7	
	Organic Mat	ter % 7.1	7.	3	
	Average Organic	e Matter %	7.2		
	Note: moisture content	as a percentage of oven-dried mass			
* The te	est data given herein pe	ertain to the sample provided only. of the data can be prov	This report constitutes a testing ser ided upon request.	vice only. Interpretation	
	DC	January 26, 2021	SJ	January 29, 2021	
TESTED BY		DATE	CHECKED BY	DATE	

MOIST	MOISTURE, ASH, AND ORGANIC MATTER OF ORGANIC SOILS			Reference(s) ASTM D2974		
Client:	Coastal GasLink		Borehole: BH2			
Project:	Morice River Geotech	nical Investigation	Sample: 4			
_ocation:	Morice River, BC					
Project No.:				-443		
Method:				Other Remarks:		
Oven Tempe	erature 110±5	°C		4.75 mm screen removed prior		
Furnace Ter	mperature 440±4	°C	testing.			
	Moisture Conter	nt %	10.0			
	Trial #			2		
	Ash Content	% 98.7	39	3.7		
	Organic Matte	r% 1.3	1	.3		
	Average Organic N	latter %	1.3			
	Note: moisture content a	s a percentage of oven-dried mass				
* The te	est data given herein per	ain to the sample provided only. of the data can be provi	This report constitutes a testing se ded upon request.	rvice only. Interpretation		
	DC	January 27, 2021	SJ	January 29, 2021		
TESTED BY		DATE	CHECKED BY	DATE		

MOIST	MOISTURE, ASH, AND ORGANIC MATTER OF ORGANIC SOILS			Reference(s) ASTM D2974	
Client:	Coastal GasLink		Borehole: BH:		
Project:	Morice River Geotec	nnical Investigation		Sample: 21	
Location:	Morice River, BC	inical involtigation		76 - 16.86	
Project No.:)-443	
Method:	Meth	A bc		Other Remarks:	
	ven Temperature 110±5°C			4.75 mm screen removed prior	
Furnace Ten		40°C	testing.		
	Moisture Conto		10.9		
	Trial #			2	
	Ash Conter	t % 97.8	97	7.8	
	Organic Matter % 2.2		2	2.2	
	Average Organic	Matter %	2.2		
	Note: moisture content	as a percentage of oven-dried mass			
* The te	est data given herein pe	rtain to the sample provided only. of the data can be prov	This report constitutes a testing se ided upon request.	rvice only. Interpretation	
	DC	January 27, 2021	SJ	January 29, 2021	
TESTED BY		DATE	CHECKED BY	DATE	

ASTM D6913

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 87.9 1" 25.4 74.0 70 3/4" 19.1 67.8 Percent Finer by Mass 1/2" 12.7 59.4 3/8" 9.5 56.0 #4 US MESH 4.75 46.5 2 #10 US MESH 39.5 0.85 #20 US MESH 32.9 #40 US MESH 0.425 26.7 #60 US MESH 0.25 21.7 #100 US MESH 0.15 18.5 #140 US MESH 0.106 16.7 30 #200 US MESH 0.075 15.3 20 10 ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

KS

Tech

Golder Associates Ltd.

1/4/2021

Date

SJ

Checked

1/11/2021

Date

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

AST Sample Location: BH20-MOR-01 Sample No.: 16 Depth Interval (m): 14.33 to 14.48

ASTM D6913

Depth Interval (m): 25.91 to 26.06 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 97.4 Percent Finer by Mass 1/2" 12.7 88.2 3/8" 9.5 81.8 #4 US MESH 4.75 65.1 2 #10 US MESH 48.2 0.85 #20 US MESH 35.3 #40 US MESH 0.425 27.5 #60 US MESH 0.25 22.2 #100 US MESH 0.15 19.0 #140 US MESH 0.106 17.3 30 #200 US MESH 0.075 15.9 20 10 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

National IM Server: GINT_GAL_NATIONALIM Unique Project ID: 2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

KS

Tech

1/6/2021

Date

SJ

Checked

1/11/2021

Date

Coastal GasLink

Morice River Geotechnical Investigation

Client: Project:

Sample Location: BH20-MOR-01 Sample No.: 26 Depth Interval (m): 25.91 to 26.06 Lab Schedule No.:

Golder Associates Ltd.

Sample No.:

Sample Location: BH20-MOR-01

32

Depth Interval (m): 35.05 to 35.20 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 100.0 #60 US MESH 0.25 100.0 #100 US MESH 0.15 99.9 #140 US MESH 0.106 99.8 30 #200 US MESH 0.075 99.6 0.0385 87.1 0.0285 78.3 20 0.0189 67.5 0.0116 53.8 10 0.0086 42.0 0.0062 33.3 0.0045 27.5 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0032 20.6 0.0013 11.2 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/5/2021 SJ 1/11/2021

National IM Server: GINT_GAL_NATIONALIM Unique Project ID: 2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Date

Checked

Date

ASTM D 422

GOLDER

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

Project: Morice River Geotechnical Investigation Depth Interval (m): 40.84 to 41.00 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 100.0 #60 US MESH 0.25 100.0 #100 US MESH 0.15 100.0 #140 US MESH 0.106 100.0 30 #200 US MESH 0.075 99.9 0.0371 96.8 0.0275 88.0 20 0.0184 76.2 0.0115 57.6 10 0.0085 46.8 0.0062 36.0 0.0045 26.3 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0032 19.5 0.0013 9.6 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/5/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

Client:

Coastal GasLink

ASTM D 422

Sample Location: BH20-MOR-01 Sample No.: 34

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 91.8 70 3/4" 19.1 90.7 Percent Finer by Mass 1/2" 12.7 86.0 3/8" 9.5 81.1 #4 US MESH 4.75 68.8 2 #10 US MESH 54.8 0.85 #20 US MESH 42.8 #40 US MESH 0.425 34.2 #60 US MESH 0.25 29.4 #100 US MESH 0.15 25.6 #140 US MESH 0.106 23.3 30 #200 US MESH 0.075 21.3 20 10 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

Coastal GasLink Morice River Geotechnical Investigation

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

KS

Tech

Golder Associates Ltd.

SJ

Checked

1/6/2021

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com 1/11/2021

Date

ASTM D6913

Sample Location: BH20-MOR-01 Sample No.: 39 Depth Interval (m): 53.34 to 53.49

Client: Project:

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 89.5 1" 25.4 70.7 70 3/4" 19.1 62.9 Percent Finer by Mass 1/2" 12.7 56.3 3/8" 9.5 53.5 #4 US MESH 4.75 43.1 2 #10 US MESH 26.6 0.85 #20 US MESH 15.4 #40 US MESH 0.425 10.4 #60 US MESH 0.25 7.9 #100 US MESH 0.15 6.5 #140 US MESH 0.106 5.7 30 #200 US MESH 0.075 5.1 20 10 n 100 10 ¹Particle Size (mm) 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

 KS
 1/4/2021
 SJ
 1/11/2021

 Tech
 Date
 Checked
 Date

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Golder Associates Ltd.

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Morice River Geotechnical Investigation

Coastal GasLink

Client: Project: Sample Location:BH20-MOR-01Sample No.:40Depth Interval (m):56.08 to 56.24

Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 93.7 1" 25.4 93.7 70 3/4" 19.1 91.8 Percent Finer by Mass 1/2" 12.7 88.8 3/8" 9.5 86.8 #4 US MESH 4.75 79.6 2 #10 US MESH 70.4 0.85 #20 US MESH 60.6 #40 US MESH 0.425 50.8 #60 US MESH 0.25 43.3 #100 US MESH 0.15 37.0 #140 US MESH 0.106 33.1 30 #200 US MESH 0.075 29.8 20 10 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay)

Project: Morice River Geotechnical Investigation

Location: Morice River, BC

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Coarse

Fine

KS

Tech

Coarse

Medium

Fine

1/4/2021

Date

Golder Associates Ltd.

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

SJ

Checked

1/11/2021

Date

ASTM D6913

Sample Location:BH20-MOR-01Sample No.:42Depth Interval (m):63.09 to 63.25

Depth Interval (m): 5.64 to 5.79 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 91.7 70 3/4" 19.1 88.3 Percent Finer by Mass 1/2" 12.7 79.5 3/8" 9.5 74.5 #4 US MESH 4.75 56.6 2 #10 US MESH 36.3 0.85 #20 US MESH 18.5 #40 US MESH 0.425 7.6 #60 US MESH 0.25 4.3 #100 US MESH 0.15 3.0 #140 US MESH 0.106 2.5 30 #200 US MESH 0.075 2.2 20 10 n 100 10 ¹**Particle Size (mm)** 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine KS 1/4/2021 SJ 1/11/2021

Coastal GasLink

Morice River Geotechnical Investigation

Client: Project:

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Checked

Date

Date

ASTM D6913

Sample Location: BH20-MOR-02

Sample No.: 8

Sample Location: BH20-MOR-02

Project: Morice River Geotechnical Investigation Sample No.: 12 Depth Interval (m): 8.53 to 8.69 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 99.8 #60 US MESH 0.25 99.5 #100 US MESH 0.15 99.3 #140 US MESH 0.106 99.1 30 #200 US MESH 0.075 98.6 0.0384 87.7 0.0289 74.8 20 0.0194 59.9 0.0117 48.0 10 0.0085 40.1 0.0061 35.1 0.0044 30.2 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0031 27.1 0.0013 20.3 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Checked

Date

Date

ASTM D 422

GOLDER

Client:

Coastal GasLink

Sample Location: BH20-MOR-02

23

Project: Morice River Geotechnical Investigation Sample No.: Depth Interval (m): 17.68 to 17.83 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 100.0 #60 US MESH 0.25 100.0 #100 US MESH 0.15 100.0 #140 US MESH 0.106 100.0 30 #200 US MESH 0.075 99.8 0.0365 98.0 0.0268 90.9 20 0.0182 75.7 0.0114 55.4 10 0.0083 46.3 0.0061 36.2 0.0044 27.1 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0031 19.9 0.0014 11.6 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

ASTM D 422

Client:

Coastal GasLink

Sample No.:

Sample Location: BH20-MOR-02

27

Depth Interval (m): 23.16 to 23.32 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 100.0 #60 US MESH 0.25 100.0 #100 US MESH 0.15 100.0 #140 US MESH 0.106 100.0 30 #200 US MESH 0.075 99.9 0.0362 99.0 0.0258 98.0 20 0.0167 92.8 0.0102 81.5 10 0.0076 69.2 0.0057 55.8 0.0042 42.4 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0030 32.0 0.0013 19.3 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

ASTM D 422

GOLDER

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

Project: Morice River Geotechnical Investigation Sample No.: Depth Interval (m): 36.58 to 36.73 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 99.9 #40 US MESH 0.425 99.9 #60 US MESH 0.25 99.8 #100 US MESH 0.15 96.5 #140 US MESH 0.106 77.9 30 #200 US MESH 0.075 52.5 0.0440 30.2 0.0336 19.7 20 0.0222 13.2 0.0131 9.3 10 0.0094 7.3 5.8 0.0067 0.0048 4.3 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0033 3.3 0.0014 2.1 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine DC/KS 1/8/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

Client:

Coastal GasLink

Sample Location:BH20-MOR-02Sample No.:38

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 89.5 Percent Finer by Mass 1/2" 12.7 80.0 3/8" 9.5 73.1 #4 US MESH 4.75 66.9 2 #10 US MESH 62.2 0.85 #20 US MESH 58.5 #40 US MESH 0.425 55.5 #60 US MESH 0.25 52.7 #100 US MESH 0.15 50.1 #140 US MESH 0.106 48.2 30 #200 US MESH 0.075 46.5 0.0414 43.8 0.0295 42.6 20 0.0188 41.4 0.0112 37.0 10 0.0080 34.5 31.5 0.0058 0.0042 27.1 ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0030 24.0 0.0013 17.0 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

 VN/KS
 1/6/2021
 SJ
 1/11/2021

 Tech
 Date
 Checked
 Date

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Golder Associates Ltd.

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

ASTM D 422

Sample Location:BH20-MOR-02Sample No.:46Depth Interval (m):48.16 to 48.31

Project: Morice River Geotechnical Investigation Sample No.: Depth Interval (m): 4.72 to 4.88 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 78.7 70 3/4" 19.1 61.1 Percent Finer by Mass 1/2" 12.7 49.2 3/8" 9.5 42.8 #4 US MESH 4.75 29.6 2 #10 US MESH 16.8 0.85 #20 US MESH 8.2 #40 US MESH 0.425 4.5 #60 US MESH 0.25 2.8 #100 US MESH 0.15 2.0 #140 US MESH 0.106 1.6 30 #200 US MESH 0.075 1.3 20 10 n 100 10 ¹Particle Size (mm) 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine KS 1/5/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Checked

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com Date

ASTM D6913

5

Sample Location: BH20-MOR-03

Client:

Coastal GasLink

Project: Morice River Geotechnical Investigation Depth Interval (m): 6.55 to 6.71 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 100.0 2 #10 US MESH 100.0 0.85 #20 US MESH 100.0 #40 US MESH 0.425 100.0 #60 US MESH 0.25 100.0 #100 US MESH 0.15 100.0 #140 US MESH 0.106 100.0 30 #200 US MESH 0.075 99.9 0.0357 99.5 0.0257 96.5 20 0.0167 91.5 0.0102 79.4 10 0.0075 70.4 0.0056 55.4 0.0042 41.4 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0030 31.3 0.0013 16.8 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

Checked

Date

Coastal GasLink

Client:

Sample Location: BH20-MOR-03 Sample No.: 8

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 90.9 1" 25.4 81.0 70 3/4" 19.1 74.6 Percent Finer by Mass 1/2" 12.7 60.8 3/8" 9.5 53.9 #4 US MESH 4.75 40.3 2 #10 US MESH 26.9 0.85 #20 US MESH 17.8 #40 US MESH 0.425 11.8 #60 US MESH 0.25 7.6 #100 US MESH 0.15 5.4 #140 US MESH 0.106 4.6 30 #200 US MESH 0.075 4.0 20 10 n 100 10 ¹**Particle Size (mm)** 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine

National IM Server: GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

KS

Tech

Golder Associates Ltd.

1/6/2021

Date

SJ

Checked

1/11/2021

Date

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

Sample Location:BH20-MOR-03Sample No.:19Depth Interval (m):13.87 to 14.02

Depth Interval (m): 23.47 to 23.62 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 97.2 70 3/4" 19.1 93.2 Percent Finer by Mass 1/2" 12.7 84.8 3/8" 9.5 81.4 #4 US MESH 4.75 73.1 2 #10 US MESH 68.0 0.85 #20 US MESH 64.7 #40 US MESH 0.425 61.8 #60 US MESH 0.25 59.9 #100 US MESH 0.15 57.7 #140 US MESH 0.106 55.4 30 #200 US MESH 0.075 53.2 0.0413 49.1 0.0299 45.0 20 0.0196 39.0 0.0118 31.0 10 0.0086 25.6 19.6 0.0063 0.0045 16.4 ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0032 13.0 0.0014 7.0 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

Checked

Date

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation

Sample Location:BH20-MOR-03Sample No.:27Depth Interval (m):23 47 to 23 62

Project: Morice River Geotechnical Investigation Depth Interval (m): 4.88 to 5.03 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 92.4 70 3/4" 19.1 86.6 Percent Finer by Mass 1/2" 12.7 72.3 3/8" 9.5 62.2 #4 US MESH 4.75 47.3 2 #10 US MESH 33.2 0.85 #20 US MESH 14.6 #40 US MESH 0.425 4.2 #60 US MESH 0.25 1.5 #100 US MESH 0.15 1.0 #140 US MESH 0.106 0.5 30 #200 US MESH 0.075 0.4 20 10 n 100 10 0.01 0.001 0.0001 ¹Particle Size (mm) GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine KS 1/4/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

Client:

Coastal GasLink

ASTM D6913

Sample Location: BH20-MOR-04 Sample No.: 6

ASTM D 422

Project: Morice River Geotechnical Investigation 13 Depth Interval (m): 8.53 to 8.69 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 98.2 3/8" 9.5 94.4 #4 US MESH 4.75 75.6 2 #10 US MESH 56.3 0.85 #20 US MESH 46.7 #40 US MESH 0.425 39.3 #60 US MESH 0.25 32.2 #100 US MESH 0.15 27.2 #140 US MESH 0.106 24.5 30 #200 US MESH 0.075 22.4 0.0468 20.3 0.0335 18.1 20 0.0215 15.9 0.0126 13.2 10 0.0090 12.1 0.0064 10.5 0.0046 8.9 n ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0032 7.7 0.0014 5.9 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

Client:

Coastal GasLink

Sample Location: BH20-MOR-04 Sample No.:

Sample Location: BH20-MOR-04

Project: Morice River Geotechnical Investigation Sample No.: 17 Depth Interval (m): 12.34 to 12.50 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 100.0 70 3/4" 19.1 100.0 Percent Finer by Mass 1/2" 12.7 100.0 3/8" 9.5 100.0 #4 US MESH 4.75 98.4 2 #10 US MESH 90.6 0.85 #20 US MESH 78.1 #40 US MESH 0.425 67.9 #60 US MESH 0.25 61.8 #100 US MESH 0.15 57.4 #140 US MESH 0.106 54.7 30 #200 US MESH 0.075 52.1 0.0443 48.0 0.0317 45.3 20 0.0204 40.9 0.0120 36.4 10 0.0086 32.8 0.0062 29.2 0.0044 26.6 ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0031 22.0 0.0013 16.5 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine VN/KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

ASTM D 422

GOLDER

Client:

Coastal GasLink

Sample No.:

Sample Location: BH20-MOR-05

3

ASTM D6913

Depth Interval (m): 2.44 to 2.59 Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle 4 **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 88.9 3.5" 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 96.8 70 3/4" 19.1 92.9 Percent Finer by Mass 1/2" 12.7 88.7 3/8" 9.5 85.4 #4 US MESH 4.75 73.2 2 #10 US MESH 61.5 0.85 #20 US MESH 50.3 #40 US MESH 0.425 42.5 #60 US MESH 0.25 37.4 #100 US MESH 0.15 31.7 #140 US MESH 0.106 27.2 30 #200 US MESH 0.075 23.5 20 10 n ¹**Particle Size (mm)** 100 10 0.01 0.001 0.0001 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Fine Coarse Coarse Medium Fine KS 1/6/2021 SJ 1/11/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 12/1/21

Tech

Golder Associates Ltd.

Date

300 - 3811 North Fraser Way, Burnaby, BC V5J 5J2 CANADA Tel: +1 (604) 412 6899 Fax: +1 (604) 412 6816 www.golder.com

Checked

Date

Coastal GasLink

Morice River Geotechnical Investigation

Client: Project:

Location: Morice River, BC Project No.: 19122805 Phase: 7000 Lab Schedule No.: Legend U.S. Sieve Size (meshes / inch) Hydrometer Size of Opening (inches) 24 12 6 3 1 1/2 3/4 3/8 10 20 40 60 100 200 Particle **USCS Particle Size Scale** Percent Sieve Size Size 100 Passing (USS) (mm) (mm) 6" 152.4 100.0 90 3.5" 88.9 100.0 3" 76.2 100.0 2" 50.8 100.0 80 1 1/2" 38.1 100.0 1" 25.4 95.9 70 3/4" 19.1 89.8 Percent Finer by Mass 1/2" 12.7 86.9 3/8" 9.5 83.7 #4 US MESH 4.75 77.7 2 #10 US MESH 70.0 0.85 #20 US MESH 62.2 #40 US MESH 0.425 55.7 #60 US MESH 0.25 51.3 #100 US MESH 0.15 47.6 #140 US MESH 0.106 45.2 30 #200 US MESH 0.075 43.1 0.0379 40.6 0.0275 38.4 20 0.0180 35.3 0.0108 30.9 10 0.0079 27.4 24.4 0.0057 0.0041 22.4 ¹Particle Size (mm) 100 10 0.01 0.001 0.0001 0.0029 19.1 0.0013 14.1 GRAVEL SAND BOULDER COBBLE FINES (Silt, Clay) Coarse Fine Coarse Medium Fine KS 1/25/2021 SJ 1/29/2021

National IM Server:GINT_GAL_NATIONALIM Unique Project ID:2660 Output Form: LAB_PARTICLE SIZE (W/ GRADATIONS) 2018 SJohn 29/1/21

Tech

Golder Associates Ltd.

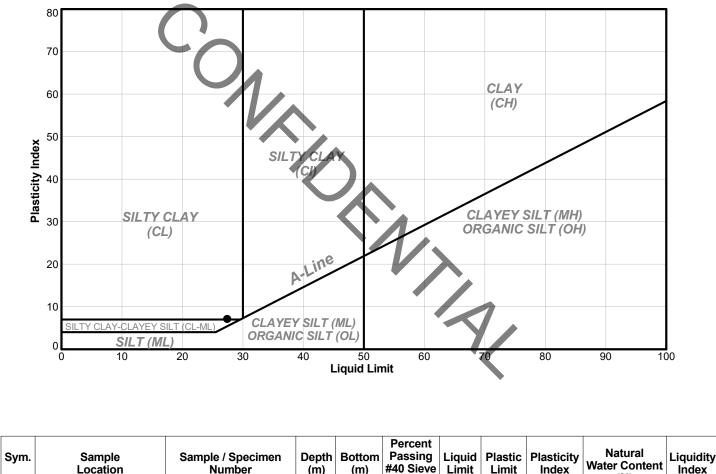
Date

Checked

Date

Client: Project: Coastal GasLink

Morice River Geotechnical Investigation


ASTM D 422 Sample Location: BH20-MOR-05 Sample No.: 20 Depth Interval (m): 16.00 to 16.15

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-01
Project:	Morice River Geotechnical Investigation	Sample No.: 5
Location:	Morice River, BC	Depth Interval (m): 4.27 to 4.42
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

Preparation Method: Air Dried

PLASTICITY CHART

• BH20-MOR-01 NP - NON-PLASTIC RESULT ND - NOT DETERMINED

Location

LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21

Output

Note: The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

(m)

4.27

Number

5

DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

(m)

4.42

Limit

27

(%)

ND

Limit

20

Index

7.0

Request OGC2021-011 Page 125

(%)

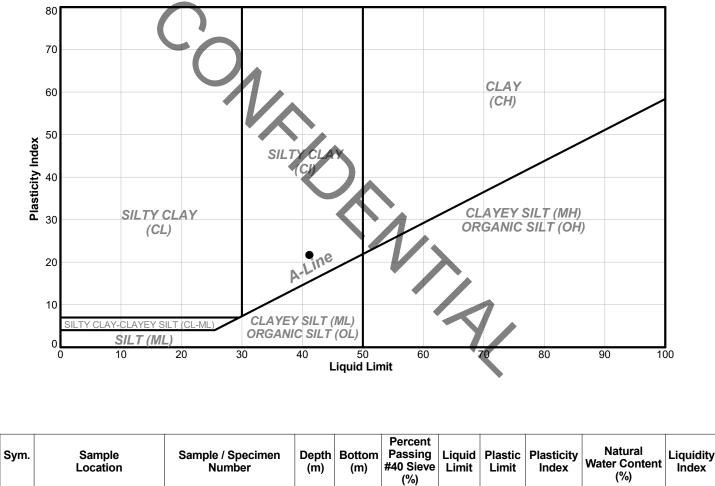
8.9

Index

-1.6

ASTM D 4318

Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-02
Project:	Morice River Geotechnical Investigation	Sample No.: 46
Location:	Morice River, BC	Depth Interval (m): 48.16 to 48.31
Project No.:	19122805 Phase: 7000	Lab Schedule No.:


Test Method: A-Multi Point

LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21

Output

•

Preparation Method: Air Dried

PLASTICITY CHART

NP - NON-PLASTIC RESULT ND - NOT DETERMINED

46

BH20-MOR-02

Note: The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

48.16

DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

48.31

56

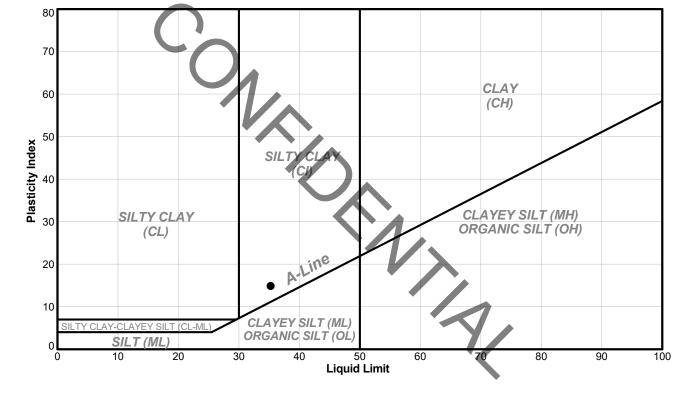
41

19

22.0

Request OGC2021-011 Page 126

14.9


-0.2

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-03
Project:	Morice River Geotechnical Investigation	Sample No.: 8
Location:	Morice River, BC	Depth Interval (m): 6.55 to 6.71
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

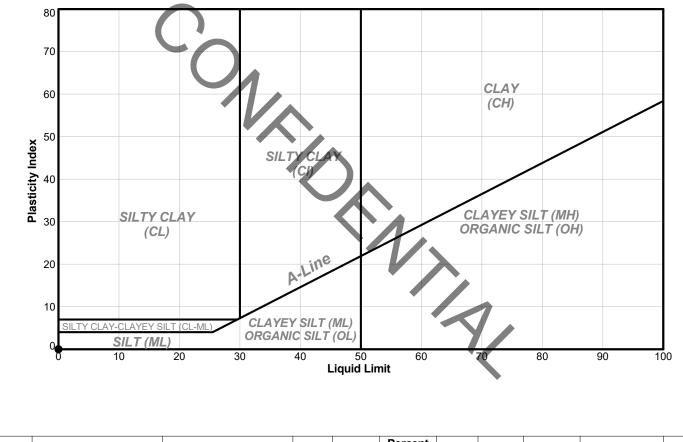
Preparation Method: Wet

PLASTICITY CHART

(B ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21	
3AL_NATIONALIM Unique Project ID: Output Form:_LA	
National IM Server: GINT_GA	=

Sym.	Sample Location	Sample / Specimen Number	Depth (m)	Bottom (m)	Percent Passing #40 Sieve (%)		Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-03	8	6.55	6.71	100	35	20	15.0	25.6	0.4

NP - NON-PLASTIC RESULT ND - NOT DETERMINED


DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-03
Project:	Morice River Geotechnical Investigation	Sample No.: 23
Location:	Morice River, BC	Depth Interval (m): 17.98 to 18.29
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

Preparation Method: Wet

PLASTICITY CHART

Sym	. Sample Location	Sample / Specimen Number	Depth (m)		Percent Passing #40 Sieve (%)	Liquid Limit	Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-03	23	17.98	18.29	ND	NP	NP	NP	20.0	NP

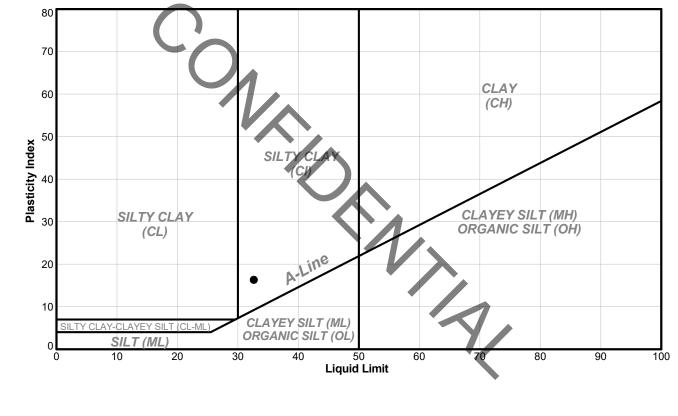
NP - NON-PLASTIC RESULT ND - NOT DETERMINED

VATIONALIM Unique Project ID: Output Form:_LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21

≥

Note: The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date


Request OGC2021-011 Page 128

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-04
Project:	Morice River Geotechnical Investigation	Sample No.: 17
Location:	Morice River, BC	Depth Interval (m): 12.34 to 12.50
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

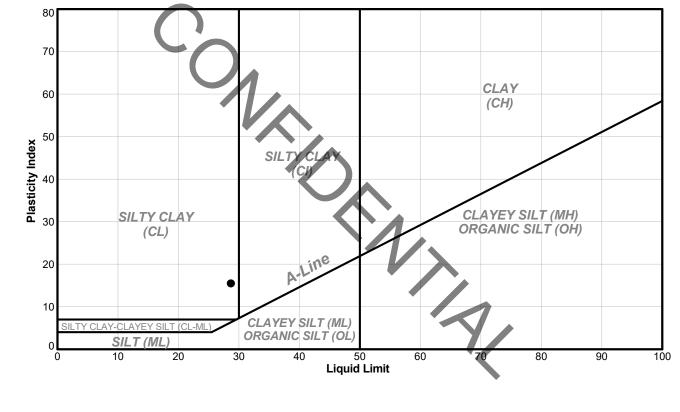
Preparation Method: Air Dried

PLASTICITY CHART

ational IM Server CINT_GAL_NATIONALIM Unique Project ID: Output Form: _LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/12/

Sym.	Sample Location	Sample / Specimen Number	Depth (m)	Bottom (m)	Percent Passing #40 Sieve (%)	Liquid Limit	Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-04	17	12.34	12.50	68	33	16	17.0	21.7	0.3

NP - NON-PLASTIC RESULT ND - NOT DETERMINED


	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-05
Project:	Morice River Geotechnical Investigation	Sample No.: 11
Location:	Morice River, BC	Depth Interval (m): 8.53 to 8.69
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

Preparation Method: Air Dried

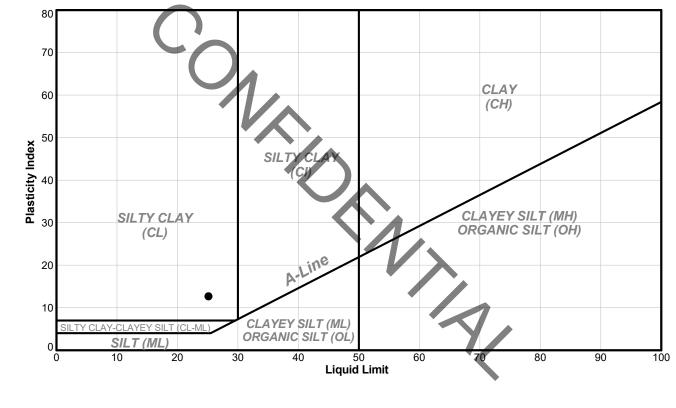
PLASTICITY CHART

9	
8	
INGLE)	
ġ	
(SII	
ш	
CASAGRANDE	
R	
ğ	
ŝ	
RERG	
ű,	
8	
臣	
Ł	
LAB AT	
2	
Ë	_
þ	
Ŧ	
đ	1
Out	l '
ë	
ect	
ē	
<u>д</u>	⊢
8	
5	
IM Unic	L
Ł	
Š	
Ē	
INT_GAL_NA	
2	
R	
Ě	
Ш	
ų.	
Š	
ŝ	
Σ	=
폡	
ţi	
Na	_

SJohn 15/1/21

Sym.	Sample Location	Sample / Specimen Number	Depth (m)		Percent Passing #40 Sieve (%)		Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-05	11	8.53	8.69	ND	29	13	16.0	10.6	-0.1

NP - NON-PLASTIC RESULT ND - NOT DETERMINED


DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-05
Project:	Morice River Geotechnical Investigation	Sample No.: 17
Location:	Morice River, BC	Depth Interval (m): 12.98 to 13.11
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

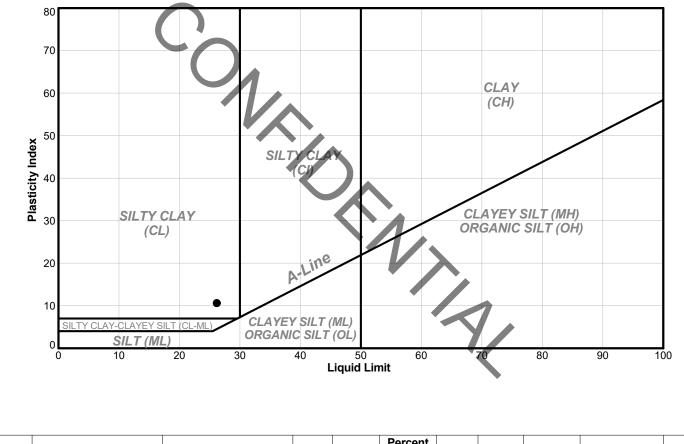
Preparation Method: Air Dried

PLASTICITY CHART

ational IM Server CINT_GAL_NATIONALIM Unique Project ID: Output Form: _LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/12/

Sym.	Sample Location	Sample / Specimen Number	Depth (m)		Percent Passing #40 Sieve (%)	Liquid Limit	Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-05	17	12.98	13.11	ND	25	12	13.0	8.7	-0.3

NP - NON-PLASTIC RESULT ND - NOT DETERMINED


DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

		ASTM D 4318
Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-05
Project:	Morice River Geotechnical Investigation	Sample No.: 22
Location:	Morice River, BC	Depth Interval (m): 17.37 to 17.53
Project No.:	19122805 Phase: 7000	Lab Schedule No.:

Test Method: A-Multi Point

Preparation Method: Air Dried

PLASTICITY CHART

Sym.	Sample Location	Sample / Specimen Number	Depth (m)		Percent Passing #40 Sieve (%)	Liquid Limit	Plastic Limit	Plasticity Index	Natural Water Content (%)	Liquidity Index
•	BH20-MOR-05	22	17.37	17.53	ND	26	16	10.0	12.1	-0.4

NP - NON-PLASTIC RESULT ND - NOT DETERMINED

VATIONALIM Unique Project ID: Output Form: _LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21

JA S

≥

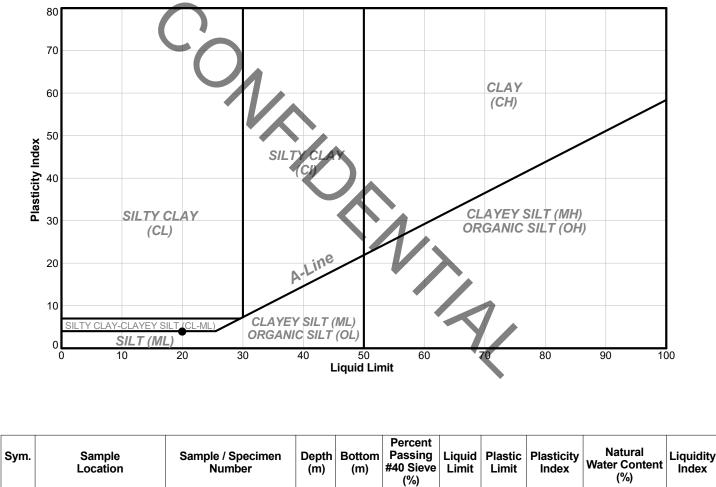
Note: The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

Request OGC2021-011 Page 132

ASTM D 4318

Client:	Coastal GasLink	Sonic Hole ID: BH20-MOR-06
Project:	Morice River Geotechnical Investigation	Sample No.: 1
Location:	Morice River, BC	Depth Interval (m): 0.61 to 0.76
Project No.:	19122805 Phase: 7000	Lab Schedule No.:


Test Method: A-Multi Point

LAB ATTERBERG CASAGRANDE (SINGLE) 2018 SJohn 15/1/21

Output

•

Preparation Method: Air Dried

PLASTICITY CHART

NP - NON-PLASTIC RESULT ND - NOT DETERMINED

1

BH20-MOR-06

Note: The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

0.61

DC/VN	1/11/2021	SJ	1/15/2021
Tech	Date	Checked	Date

0.76

ND

20

16

4.0

Request OGC2021-011 Page 133

17.4

0.3

Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

					ASTIN DOS4
Project No.:	19122805-7000	Bore	hole:	BH20-MOR-01	
Project:	Morice River Geotechnical Investigation	Sample Number:		9	
Location:	Morice River, BC	Dept	h (m):	7.62 - 8.05	
Client:	Coastal GasLink	Lab S	Sch. No.:	B20-443	
	Visual Description:		% Passing 4.7	5 mm N/A	
			Excluded Mat Descriptio		
	Specific Gravity of Fine Fra	iction Met	hod B - Oven I	Dry Specimens	

		Trial 1	Trial 2
Flask Number		250 - A	250 - B
Air Removal Method		Vacuum	Vacuum
Mass of Flask (g)	M _p	90.48	89.56
Mass of Flask + Dry Soil (g)	\mathbf{A}	160.81	160.17
Mass of Flask + Soil + Water (g)	M _{rws,t}	384.25	384.18
Test Temperature (°C)	T _t	18.70	18.70
Mass of Flask + Water (g)	M _{rw,t}	339.67	339.39
Tare Number		9D	10D
Mass of Tare + Dry Soil (g)		256.43	254.32
Mass of Tare (g)		186.07	183.75
Mass of Oven Dry Soil (g)	Ms	70.36	70.57
Temperature Coefficient	к	1.00	1.00
Specific Gravity at Test Temperature	G _t	2.73	2.74
Specific Gravity at 20°C	G _{20°C}	2.73	2.74
AVERAGE SPECIFIC GRAVITY OF TRIALS		2	2.73

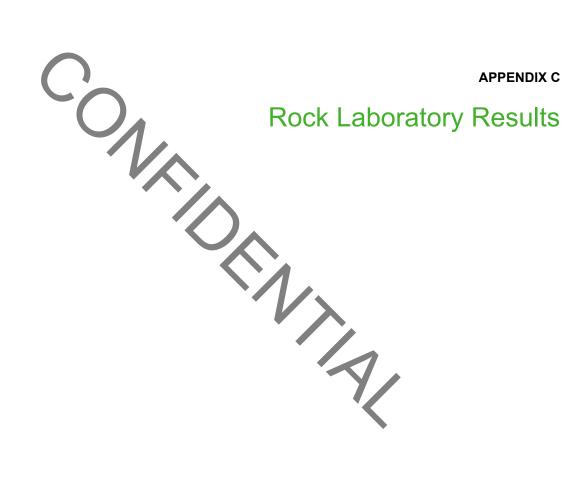
DC	January 25, 2021	SJ	January 29, 2021
TESTED BY	DATE	CHECKED BY	DATE

Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer ASTM D854

					ASTINL	/034
Project No.:	19122805-7000	Bore	hole:	BH20-N	IOR-02	
Project:	Morice River Geotechnical Investigation	Sam	ole Number:	24		
Location:	Morice River, BC	Dept	h (m):	18.59 -	19.05	
Client:	Coastal GasLink	Lab S	Sch. No.:	B20-443	3	
	Visual Description:		% Passing 4.7	5 mm N/A		
			Excluded Mat Descriptio			
	Specific Gravity of Fine Fra	ction Met	hod B - Oven D	Dry Specim	ens	
			Trial	1	Trial 2	

			i riai 2
Flask Number		250 - C	250 - D
Air Removal Method		Vacuum	Vacuum
Mass of Flask (g)	M _p	90.73	90.43
Mass of Flask + Dry Soil (g)	$\mathbf{\wedge}$	141.23	141.08
Mass of Flask + Soil + Water (g)	M _{rws,t}	372.18	372.17
Test Temperature (°C)	T _t	18.70	18.70
Mass of Flask + Water (g)	M _{rw,t}	339.96	339.91
Tare Number		13D	14D
Mass of Tare + Dry Soil (g)		233.05	235.49
Mass of Tare (g)		182.45	184.65
Mass of Oven Dry Soil (g)	Ms	50.60	50.84
Temperature Coefficient	к	1.00	1.00
Specific Gravity at Test Temperature	Gt	2.75	2.74
Specific Gravity at 20ºC	G _{20°C}	2.75	2.74
AVERAGE SPECIFIC GRAVITY OF TRIALS		2.	75

DC	January 25, 2021	SJ	January 29, 2021
TESTED BY	DATE	CHECKED BY	DATE



Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

					A31W D034
Project No.:	19122805-7000	Bore	ehole:	BH20-MOR-05	
Project:	Morice River Geotechnical Investigation	Sam	ple Number:	12	
Location:	Morice River, BC	Dept	th (m):	9.14 - 9.75	
Client:	Coastal GasLink	Lab	Sch. No.:	B20-443	
	Visual Description:		% Passing 4.7	5 mm N/A	
			Excluded Mat Descriptio		
	Specific Gravity of Fine Fra	nction Me	Lthod B - Oven I	Dry Specimens	
			Tuint	A	T.::-10

		Trial 1	Trial 2
Flask Number		250 - E	250 - F
Air Removal Method		Vacuum	Vacuum
Mass of Flask (g)	M _p	87.16	90.70
Mass of Flask + Dry Soil (g)	$\mathbf{\wedge}$	157.57	160.84
Mass of Flask + Soil + Water (g)	M _{rws,t}	379.91	384.28
Test Temperature (°C)	T _t	18.70	18.70
Mass of Flask + Water (g)	M _{rw,t}	335.34	339.91
Tare Number		18D	19D
Mass of Tare + Dry Soil (g)		254.45	252.43
Mass of Tare (g)		184.11	182.44
Mass of Oven Dry Soil (g)	Ms	70.34	69.99
Temperature Coefficient	к	1.00	1.00
Specific Gravity at Test Temperature	Gt	2.73	2.73
Specific Gravity at 20°C	G _{20°C}	2.73	2.73
AVERAGE SPECIFIC GRAVITY OF TRIALS		2.	73

DC	January 25, 2021	SJ	January 29, 2021		
TESTED BY	DATE	CHECKED BY	DATE		

Request OGC2021-011 Page 137

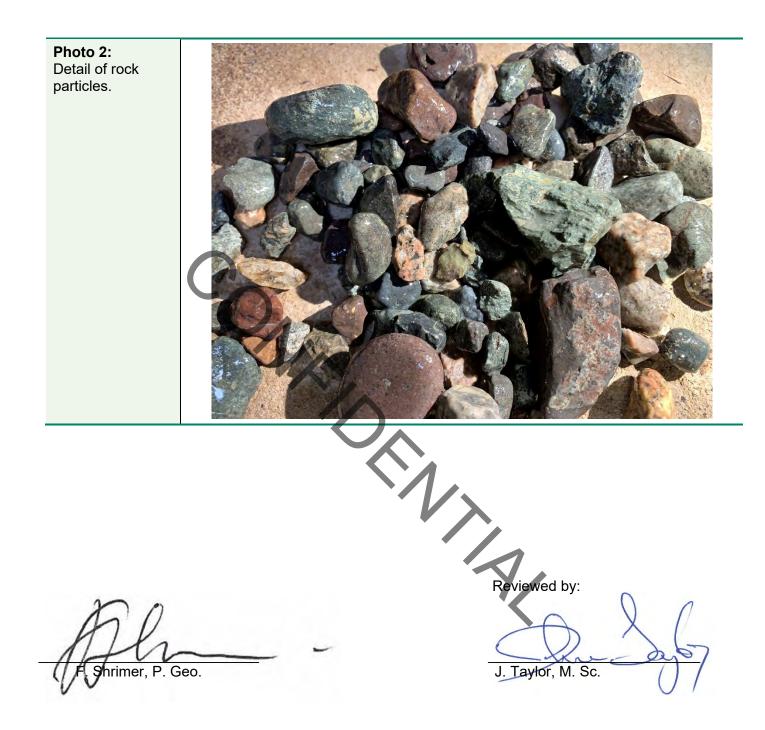
PETROGRAPHIC EXAMINATION OF ROCK CSA A23.2-15A/ASTM C295

Coastal GasLink Ltd. 450 – 1 Street SW Calgary, Alberta T2P 5H1 January 25, 2021 Project number: 19122805-7000

PROJECT: <u>Morice River Crossing – Rock and Sediment Evaluation</u>

Source: BH20-MOR-01 Sample: Gravel fraction of Sample #22: 22.25 – 22.40 n	m
--	---

Date sampled: 24 November 2020


Sampled by: Golder

PETROGRAPHIC DESCRIPTION	% BY MASS
Mafic volcanic – mostly porphyritic, occasional breccia, rare aphanitic, red, brown, black, dark grey, dark brown, mostly hard, strong, a few are altered and are weathered and are softer and of moderate to low strength. Subangular to subrounded shapes.	24.8
Intermediate volcanic – porphyritic, breccias, rare aphanitic, green, brown, grey. Strong, hard, but some weathered/softer varieties.	28.0
Felsic porphyritic volcanic – rare breccia, light grey, light green, cream, beige, moderately to very hard, dense, strong	9.6
Plutonic rock – granite-diorite, medium-grained, generally fresh. Brown, red, white- black, grey. Strong, dense, rare deeply weathered and weaker.	14.7
Plutonic rock – fine-grained-very fine-grained, strong, dense, grey	3.7
Chert/Quartzite – very fine-grained, hard, conchoidal fracture, brown, beige, dark grey, dense, strong	19.2
TOTAL	100.0

Photo 1:

Sample slightly wetted to enhance characteristics. Note range of colours, textures and lithologies. Shapes range from angular to wellrounded.

PETROGRAPHIC EXAMINATION OF ROCK CSA A23.2-15A/ASTM C295

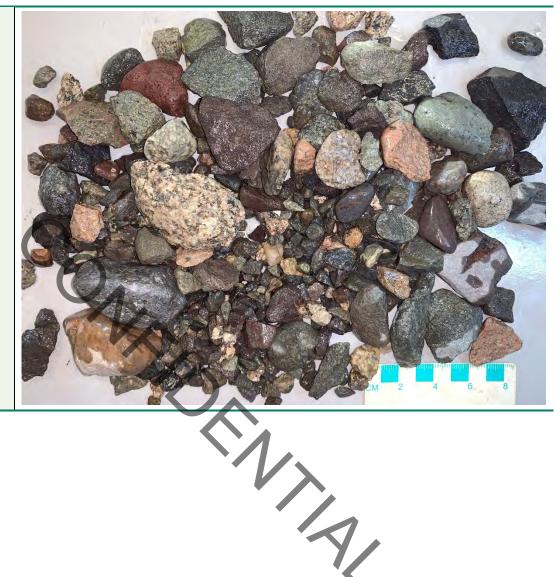
Coastal GasLink Ltd. 450 – 1 Street SW Calgary, Alberta T2P 5H1 January 25, 2021 Project number: 19122805-7000

PROJECT: <u>Morice River Crossing – Rock and Sediment Evaluation</u>

Source: BH20-MOR-03 Sample:	Gravel fraction of Sample #5: 4.72 – 4.88 m
-----------------------------	---

Date sampled: 13 December 2020

Sampled by: Golder


PETROGRAPHIC DESCRIPTION	% BY MASS			
Mafic volcanic – mostly porphyritic, occasional breccia, rare aphanitic, red, brown, black, dark grey, dark brown, mostly hard, strong, a few are altered and are weathered and are softer and of moderate to low strength. Subangular to subrounded shapes.	24.0			
Intermediate volcanic – porphyritic, breccias, rare aphanitic, green, brown, grey. Strong, hard, but some weathered/softer varieties.	27.7			
Felsic porphyritic volcanic – rare breccia, light grey, light green, cream, beige, moderately to very hard, dense, strong	24.7			
Plutonic rock – granite-diorite, medium-grained, generally fresh. Brown, red, white- black, grey. Strong, dense, rare deeply weathered and weaker.				
Plutonic rock – fine-grained-very fine-grained, strong, dense, grey	5.3			
Chert/Quartzite – very fine-grained, hard, conchoidal fracture, brown, beige, dark grey, dense, strong	0.8			
Sandstone – quartz-rich and lithic sandstone varieties, brown, dense, strong.	0.7			
TOTAL	100.0			

TAI

Request OGC2021-011 Page 140

Photo 1:

Sample slightly wetted to enhance characteristics. Note range of colours, textures and lithologies. Shapes range from angular to wellrounded.

Shrimer, P. Geo.

Reviewed by:

J. Taylor, M. Sc.

PETROGRAPHIC EXAMINATION OF ROCK ASTM C295/C1721

Coastal GasLink Ltd. 450 – 1 Street SW Calgary, Alberta T2P 5H1 January 21, 2021 Project number: 19122805-7000

PROJECT: <u>Morice River Crossing – Rock and Sediment Evaluation</u>

	Source:	BH20-MOR-03	Sample:	#31: 31.72 – 31.84 m			
Date	Date sampled: 15 December 2020 Sampled by: Golder						
SAMPL	SAMPLE BH20-MOR-03 Sample 31 @ 31.72 – 31.84 m						
SAMPLE TYPE		Rock core sa	Rock core sample				
ROCK NAME		Coarse cong	Coarse conglomeratic Sandstone				
	DESCRIPTION Coarse-grained sandstone with coarser conglomeratic clasts, with pebbles up to about 12 mm diameter. Coarser grains are well-rounded; particles become more angular with decreasing particle size. Clasts (sand- and gravel-sized) are dominantly composed of slightly to significantly altered volcanic rocks (estimate 75%), with lesser amounts of quartzite, possible chert, and very fine-grained granitic rock. The clasts are generally of medium to coarse sand sizes (i.e., 1-5 mm) with about 30% gravel-sized clasts (i.e., >5 mm) The cement/matrix is siliceous and may consist of common opal. Some zoned composition of the cement is observed in some portions of the sample, where crystalline quartz appears in the centre of an area of cement. The siliceous matrix is generally a fairly uniform light cream-beige colour. The Mohs hardness of the cement ranges from an estimated value of about "6" to "7". Individual rock particles are of variable Mohs hardness, with altered igneous rocks being in the "5" to "6" range, and siliceous and/or less altered rocks having Mohs hardness values in the "6" to "7" range.						
MAJOF	R CONSTITUEN			Quartzite and/or chert clasts: 10%			
		Fine-grained	granitoid clasts: 7%	Siliceous (possibly opal) matrix: 6%			
ESTIM	ATED OVERALI	5.5 - 6.0					
	HARDNESS	5.5 - 0.0	5.5 - 0.0				
HCI RE	SPONSE	none	none				
MAGNE	ET RESPONSE	none					


Note: Percentages of constituents are visual estimates.

Photo 1:

Photo 2: Detail of rock showing range of grain sizes and

in length.

Sample after cutting and polishing of middle section. Outer portions have been wetted to enhance view.

Photo 3:

Crude sorting of grains by size. View is about 40 mm across.

Photo 4:

View illustrating light-coloured siliceous/opal cement enclosing clasts of varying size and lithology. Mag. 10x, field of view 8.4 mm

Photo 5:

Two volcanic clasts. Mag. 10x, FOV = 8.4 mm

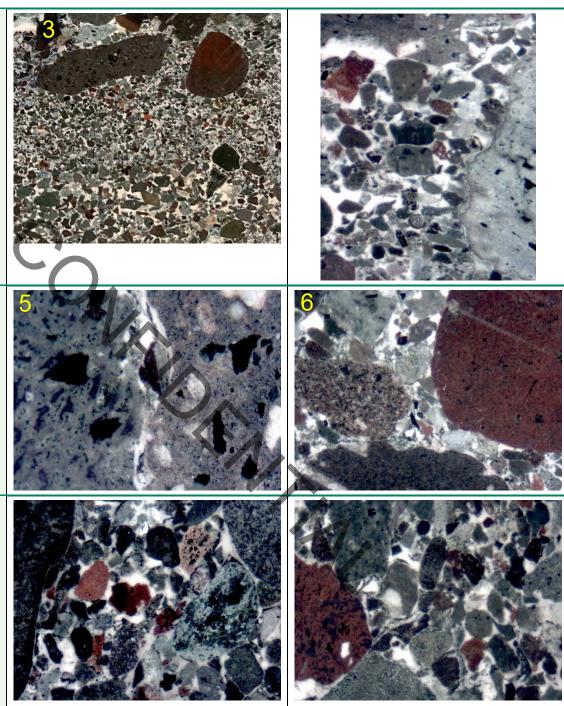

Photo 6: General view of rock, mag. 10x, fov is 8.4 mm.

Photo 7:

Numerous mostly volcanic grains in silica/opal cement. Mag. 10x, FOV = 8.4 mm

Photo 8:

Range of volcanic grains dominate the view. mag. 10x, fov is 8.4 mm

nrimer, P. Geo.

Reviewed by:

J. Taylor, M. Sc.

PETROGRAPHIC EXAMINATION OF ROCK ASTM C295/C1721

Coastal GasLink Ltd. 450 – 1 Street SW Calgary, Alberta T2P 5H1 January 21, 2021 Project number: 19122805-7000

PROJECT: <u>Morice River Crossing – Rock and Sediment Evaluation</u>

Source:	BH20-MOR-04	Sample:	#29: 62.03 – 62.23 m

Date sampled: 09 December 2020

Sampled by: Golder

. (
SAMPLE	BH20-MOR-04 Sample 29 @ 62.03 -	62.23 m				
SAMPLE TYPE	Rock core sample					
ROCK NAME	Coarse-grained Conglomerate					
DESCRIPTION	Coarse conglomerate, with pebbles up to 55 mm diameter. Pebbles are dominantly composed of slightly to significantly altered volcanic rocks (estimate 75%), with lesser amounts of quartzite, possible chert, and very fine-grained granitic rock. The gravel particles are well-rounded. As the clasts become smaller in size, their angularity increases. The clasts are generally of gravel sizes (i.e., >5 mm) and contain very few sand-sized grains. The cement/matrix is siliceous and may be common opal, with some gradational composition evident in some portions of the sample, where crystalline quartz appears in the centre of an area of matrix. The siliceous matrix is generally a fairly uniform light cream-beige colour, with a Mohs hardness that ranges from an estimated "6" to "7". Many of the volcanic particles exhibit some degree of alteration, with chlorite, clay and minor iron-oxides being dominant alteration products. The altered rocks have apparent lower Mohs hardness.					
MAJOR CONSTITUENTS	Volcanic clasts: 70%	Quartzite and/or chert clasts: 10%				
	Fine-grained granitoid clasts: 7%	Sand-sized clasts: 7%				
	Siliceous (possibly opal) matrix: 6%	·				
ESTIMATED OVERALL MOHS HARDNESS	5.5 – 6.0					
HCI RESPONSE	none					
MAGNET RESPONSE	none					

Note: Percentages of constituents are visual estimates.

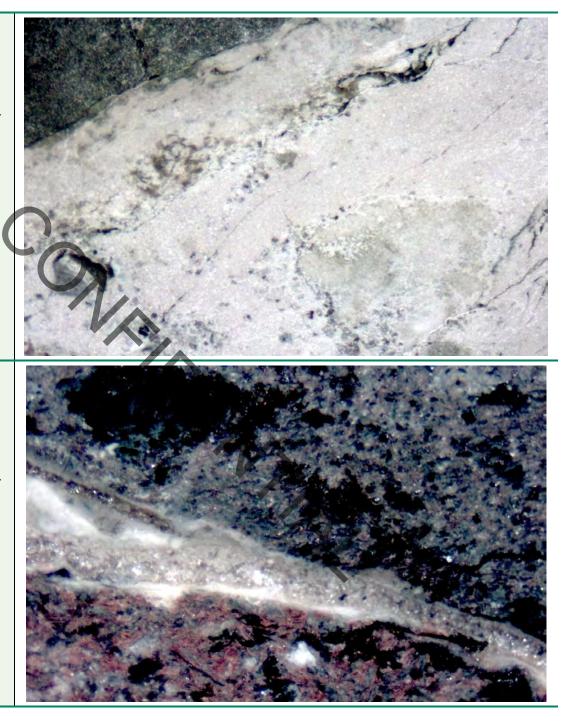
Photo 1 – Sample cut, with middle section polished for examination.

Photo 2 – Detail of sample showing rounded multi-lithic gravel clasts with minimal sand-sized grains enclosed in siliceous creamcoloured matrix. Field of view is approximately 65 mm across.

Photos 3 and 4: An array of primarily volcanic rock types are set in siliceous cement. Note zonation within the cement shows some crystalline quartz. Both views are at a magnification of 10x with a field of view of 8.4 mm in length.

Photo 5:

Volcanic porphyry on left portion of view and fine-grained granitoid on right portion of view. Magnification 10x, FOV 8.4 mm.


Photo 6:

White-creamcoloured siliceous (possibly opaline) cement encloses the sand and gravel clasts. Note grey linear marks are the result of scratch tests using a steel implement. H = 6.5-7.

Photo 7: Detail of siliceous cement showing inclusions and layering. Magnification 15x, field of view 6.2 mm.

Photo 8: Detail of cement showing development of crystalline quartz. Magnification 25x, field of view 4.0 mm.

hrimer, P. Geo.

Reviewed by:

J. Taylor, M. Sc.

Laboratory Determination of Uniaxial Compressive Strength of Intact

Rock Core Specimens

Summary of Test Results

														ASTMI)7012 N	lethod C
Proj	ect No.:	1912280	5/7000						Failure N	lodes	(5)	Single Shea	r	Noto: Alpha	Г	
Proj	ect:	Morice F	liver Crossin	g Geotec	hnical Inve	estigation			(1) Sim	ple Extensio	on (6)	Spalling		Note: Alpha angle, α,		
Loca	ation:	Morice F	liver, BC						(2) Mult	iple Extensi	on (7)	Other		measured relative to the))	<u> </u>
Clie	nt:	Coastal	GasLink						(3) Mult	iple Fractur	ing			core axis		
Lab	ID No:	B20-443							(4) Mult	iple Shear	* We	et density bas	sed on as rec	eived moisture	Ĺ	\square
	Borehole	Sample	Depth	Dia	Ht	Area	Volume	Mass	* Wet	Moisture	Dry	Maximum	Stress		Failu	re Mode
No.	Borenole	Sample	Deptil	Dia	п	Area	Volume	IVIA55	Density	WOISture	Density	Load	σ_{u}	Rock Type	Fallu	le Mode
	#	#	(m)	(mm)	(mm)	(cm²)	(cm³)	(g)	(kg/m³)	(%)	(kg/m³)	(kN)	(MPa)		Туре	α (deg)
1	BH20-MOR-02	48	60.82-61.08	60.97	125.08	29.20	365.18	821.90	2251	2.68	2192	82.00	28.1	Conglomerate	3/6	
2	BH20-MOR-03	32	36.57-36.85	60.30	130.10	28.56	371.54	924.30	2488	1.01	2463	215.90	75.6	Conglomerate	3/6	
3	BH20-MOR-04	24	20.63-20.75	60.88	118.24	29.11	344.19	847.30	2462	4.20	2363	145.10	49.8	Conglomerate	3/6	
4	BH20-MOR-05	27	30.96-31.14			1	Sample b	roke during p	reparation. N	ot suitable for t	esting.			Conglomerate		
5	BH20-MOR-05	29	33.37-33.63	60.84	130.79	29.07	380.23	883.80	2324	1.74	2285	115.40	39.7	Conglomerate	6/3	
															L	
															<u> </u>	
											$\mathbf{\lambda}$				<u> </u>	
										•		1			<u> </u>	
															<u> </u>	
															<u> </u>	
												•				
				ТЬ	e test data	aiven herei	in nertain to	the sample	nrovided o	nly This rep	ort constitue	tes a testing se	ervice only		<u> </u>	
		E		111		-				nny. mis iep		GP	Sivice Only.	lopuor: 7-00		
							January 5 DATE							January 7, 20) Z I	
		TESTE	טאט				DATE				CHEC	KED BY		DATE		

Golder Associates Ltd.

300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

ASTM D7012

Project No.:	19122805/7000	Borehole:	BH20-MOR-02
Project:	Morice River Crossing Geotechnical Investigation	Sample Number:	48
Location:	Morice River, BC	Depth (m):	60.82-61.08
Client:	Coastal GasLink	Lab ID No:	B20-443

Testing Re	sults	Sample Measu	irements		63	ACT N
Max Load (kN) _	82.00	Diameter (mm) Height (mm)	60.97 125.08			
Stress σ _{u (MPa)}	28.1	Area (cm²)	29.20			
-		Volume (cm³)	365.18		180	6.20
Pace Rate (kN/s)	1.25	Mass (g)	821.90			
		Moisture Content (%)	2.68		0.6	
Lithology Con	glomerate (fine)	Wet Density (kg/m³)	2251			
		Dry Density (kg/m³)	2192			
					PROJECT #	19122805/7000
				1	SAMPLE	BH20-MOR-02 Sa 48
Failure Mo	ode	Notes			DEPTH (m)	60.82-61.08
		- Water content as received			A CONSIGNOR	Contraction of the second
		- Wet density based on as rec	eived moisture		BEFO	RE TEST
Туре:	3/6	Mode:				
		(1) Simple Extension	1.			
α angle:		(2) Multiple Extension				
		(3) Multiple Fracturing				A
* Degrees measured with	h respect to core axis.	(4) Multiple Shear			E .	
		(5) Single Shear			A STATE	TIM
The impact of any pre-ex results will be noted in the	kisting feature on the test	(6) Spalling				
applicable.		(7) Other				
. <u></u>						
	Con	nments				No. of Concession, Name
Sample failed through m	atrix					X
					PROJECT #	19122805/7000
					SAMPLE	BH20-MOR-02 Sa 48
					DEPTH (m)	60.82-61.08

AFTER TEST

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	January 5, 2021	GP	January 7, 2021
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

ASTM D7012

Project No.:	19122805/7000	Borehole:	BH20-MOR-03	
Project:	Morice River Crossing Geotechnical Investigation	Sample Number:	32	
Location:	Morice River, BC	Depth (m):	36.57-36.85	
Client:	Coastal GasLink	Lab ID No:	B20-443	

Testing Results	Sample Measu	rements	A
Max Load (kN) 215.90	Diameter (mm) Height (mm)	60.30 130.10	
Stress σ _{u (MPa)} 75.6	Area (cm²)	28.56	
	Volume (cm³)	371.54	
Pace Rate (kN/s) 1.25	Mass (g)	924.30	
	Moisture Content (%)	1.01	
Lithology Conglomerate (medium)	Wet Density (kg/m³)	2488	57
	Dry Density (kg/m³)	2463	
			PROJECT # 19122805/7000
			SAMPLE BH20-MOR-03 Sa 32
Failure Mode	Notes		DEPTH (m) 36.57-36.85
	- Water content as received		
	- Wet density based on as rece	eived moisture	BEFORE TEST
Type: <u>3/6</u>	Mode:		
	(1) Simple Extension		
α angle:	(2) Multiple Extension		
	(3) Multiple Fracturing		A
* Degrees measured with respect to core axis.	(4) Multiple Shear		
The impact of any pre-existing feature on the test	(5) Single Shear		
results will be noted in the comments, if	(6) Spalling		
applicable.	(7) Other		2.1
Cor	nments		
			PROJECT # 19122805/7000
			SAMPLE BH20-MOR-03 Sa 32
			DEPTH (m) 36.57-36.85

AFTER TEST

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	January 5, 2021	GP	January 7, 2021
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

ASTM D7012

Project No.:	19122805/7000	Borehole:	BH20-MOR-04	
Project:	Morice River Crossing Geotechnical Investigation	Sample Number:	24	
Location:	Morice River, BC	Depth (m):	20.63-20.75	
Client:	Coastal GasLink	Lab ID No:	B20-443	

Testing Results	Sample Measu	rements	
Max Load (kN) 145.10	Diameter (mm)	60.88	the A
	Height (mm)	118.24	
Stress σ _u (MPa) 49.8	Area (cm²)	29.11	
	Volume (cm³)	344.19	a series and
Pace Rate (kN/s) 1.25	Mass (g)	847.30	
	Moisture Content (%)	4.20	
Lithology Conglomerate (fine-medium)	Wet Density (kg/m³)	2462	aundale
	Dry Density (kg/m ³)	2363	
			PROJECT # 19122805/7000
	VA		SAMPLE BH20-MOR-04 Sa 24
Failure Mode	Notes		DEPTH (m) 20.00-20.30
	- Water content as received		
	- Wet density based on as rece	eived moisture	BEFORE TEST
Туре: 3/6	Mode:		
	(1) Simple Extension	1	
α angle:	(2) Multiple Extension		
	(3) Multiple Fracturing		A A
* Degrees measured with respect to core axis.	(4) Multiple Shear		And here here
	(5) Single Shear		
The impact of any pre-existing feature on the test results will be noted in the comments, if	(6) Spalling		
applicable.	(7) Other		A how
Cor	nments		
Sample does not conform to ASTM requirements a specimens that meet requirements. Sample legth:		tained from test	andre
			PROJECT # 19122805/7000
			SAMPLE BH20-MOR-04 Sa 24

20.00-20.30

DEPTH (m)

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	January 5, 2021	GP	January 7, 2021
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

ASTM D7012

Project No.:	19122805/7000	Borehole:	BH20-MOR-05	
Project:	Morice River Crossing Geotechnical Investigation	Sample Number:	29	
Location:	Morice River, BC	Depth (m):	33.37-33.63	
Client:	Coastal GasLink	Lab ID No:	B20-443	

Testing Results	Sample Measure	ements	Ave
Max Load (kN)115.40		60.84 130.79	1
Stress σ _{u (MPa)} 39.7		29.07	
	Volume (cm³)	380.23	Market Ball
Pace Rate (kN/s) 1.25	Mass (g)	883.80	E- Party
	Moisture Content (%)	1.74	
Lithology Conglomerate (medium)	Wet Density (kg/m³)	2324	
	Dry Density (kg/m ³)	2285	
			PROJECT # 19122805/7000
			SAMPLE BH20-MOR-05 Sa 29
Failure Mode	Notes		DEPTH (m) 33.37-33.63
	- Water content as received		a second and the second
	- Wet density based on as recei	ived moisture	BEFORE TEST
Type: 6/3	Mode:		
	(1) Simple Extension	7	
-			
α angle:	(2) Multiple Extension		ALL
α angle:	(2) Multiple Extension(3) Multiple Fracturing		7.0
α angle: * Degrees measured with respect to core axis.			THE R
* Degrees measured with respect to core axis.	(3) Multiple Fracturing		
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test	(3) Multiple Fracturing (4) Multiple Shear		
* Degrees measured with respect to core axis.	(3) Multiple Fracturing(4) Multiple Shear(5) Single Shear		
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test results will be noted in the comments, if	(3) Multiple Fracturing(4) Multiple Shear(5) Single Shear(6) Spalling		
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test results will be noted in the comments, if applicable.	(3) Multiple Fracturing(4) Multiple Shear(5) Single Shear(6) Spalling		
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test results will be noted in the comments, if applicable.	 (3) Multiple Fracturing (4) Multiple Shear (5) Single Shear (6) Spalling (7) Other 		
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test results will be noted in the comments, if applicable.	 (3) Multiple Fracturing (4) Multiple Shear (5) Single Shear (6) Spalling (7) Other 		PROJECT # 19122805/7000
* Degrees measured with respect to core axis. The impact of any pre-existing feature on the test results will be noted in the comments, if applicable.	 (3) Multiple Fracturing (4) Multiple Shear (5) Single Shear (6) Spalling (7) Other 		PROJECT # 19122805/7000 SAMPLE BH20-MOR-05 Sa 29 DEPTH (m) 33.37-33.63

AFTER TEST

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	January 5, 2021	GP	January 7, 2021
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

GOLDER			
			ASTM D5731
Project No.:	19122805/7000	Load Conf	igurations and Specimen Shape Requirement
Project:	Morice River Crossing Geotechnical Investigation	(D)	Diametral Test, L > 0.5D
Location:	Houston BC, KP 558+075	(A)	Axial Test, 0.3W < D < W
Client:	Coastal GasLink	(B)	Block Test, L > 0.5D & 0.3W < D < W
Borehole:	BH20-MOR-02	(L)	Irregular Lump Test, L > 0.5D & 0.3W < D < W where W = $(W_1 + W_2)/2$

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	І _{s50} (MPa)	Rock Type	Remarks
1	D	84.0	60.0	60.7	2.7	3684.5	0.7	1.1	0.8	CON	Valid, failed through matrix and fine to coarse grained clasts
2	D	83.1	50.0	60.7	6.8	3684.5	1.9	1.1	2.0	CON	Valid, failed through matrix
3	A	83.1	36.1	60.7	5.9	2790.0	2.1	1.0	2.2	CON	Valid, failed through matrix and medium to coarse grained clasts
4	A	83.9	52.8	60.7	5.9	4080.7	1.4	1.1	1.6	CON	Valid, failed through matrix and medium to coarse grained clasts
5	A	84.0	46.4	60.7	4.6	3586.1	1.3	1.1	1.4	CON	Valid, failed through matrix and medium to coarse grained clasts
6	A	84.0	39.0	60.7	2.5	3014.1	0.8	1.0	0.9	CON	Valid, failed through matrix and medium to coarse grained clasts
7	D	79.0	-	-	-)	-	-	-	-	CON	Invalid, chipping
8	A	79.1	45.4	60.7	5.2	3508.8	1.5	1.1	1.6	CON	Valid, failed through matrix
9	D	74.4	45.0	60.7	21.7	3684.5	5.9	1.1	6.4	CON	Valid, failed through matrix
10	D	74.5	91.0	60.7	20.5	3684.5	5.6	1.1	6.1	CON	Valid, failed through matrix
11	D	74.5	50.0	60.7	6.7	3684.5	1.8	1.1	2.0	CON	Invalid, failed alng existing microfracture
12	A	74.5	57.5	60.7	9.6	4443.9	2.2	1.1	2.5	CON	Valid, failed through matrix
13	D	69.0	-	-	-			-	-	CON	Invalid, insufficient specimen length
14	D	69.0	35.0	60.7	2.0	3684.5	0.5	1.1	0.6	CON	Valid, failed through matrix
15	A	69.0	43.8	60.7	7.8	3385.1	2.3	1.1	2.5	CON	Valid, failed through matrix
16	A	69.1	46.5	60.7	7.4	3593.8	2.1	1.1	2.2	CON	Valid, failed through matrix
17	D	67.8	130.0	60.7	1.1	3684.5	0.3	1.1	0.3	CON	Valid, failed through matrix and medium to coarse grained clasts
18	D	67.7	70.0	60.7	7.5	3684.5	2.0	1.1	2.2	CON	Valid, failed through matrix and medium to coarse grained clasts
19	A	67.8	32.0	60.7	8.5	2473.1	3.4	1.0	3.4	CON	Valid, failed through matrix and medium to coarse grained clasts
20	D	64.4	160.0	60.7	4.3	3684.5	1.2	1.1	1.3	CON	Valid, failed through matrix and medium to coarse grained clasts
21	A	64.5	28.0	60.7	9.4	2164.0	4.3	1.0	4.2	CON	Valid, failed through coarse clast
22	D	55.3	175.0	60.7	2.9	3684.5	0.8	1.1	0.9	SS	Valid, failed through matrix
23	D	55.4	120.0	60.7	8.7	3684.5	2.4	1.1	2.6	SS	Valid, failed through matrix
24	A	55.4	48.0	60.7	8.0	3709.7	2.2	1.1	2.4	SS	Valid, failed through matrix
								· · · · · ·			
						1				1	
						1					
						1					
										1	
										1	
						+				1	
Rock Types: Con	nglomerate (CON)	, Sandstone (SS)	ļ	1	1	1	1	I	I	1	1
		oldijk					2021-JAN-12				F.Champagne
		ED BY					DATE				CHECKED BY
	1201						DATE				

Golder Associates Ltd.

GOLDER			ASTM D5731
Project No.:	19122805/7000	Load Conf	figurations and Specimen Shape Requirement
Project:	Morice River Crossing Geotechnical Investigation	(D)	Diametral Test, L > 0.5D
Location:	Houston BC, KP 558+440	(A)	Axial Test, 0.3W < D < W
Client:	Coastal GasLink	(B)	Block Test, L > 0.5D & 0.3W < D < W
Borehole:	BH20-MOR-03	(L)	Irregular Lump Test, L > 0.5D & 0.3W < D < W where W = $(W_1 + W_2)/2$

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	I _{s50} (MPa)	Rock Type	Remarks
1	A	44.2	20.2	60.7	5.3	1561.2	3.4	0.9	3.0	CON	Valid, failed through matrix and fine to coarse grained clasts
2	А	44.1	-	-	-	-	-	-	-	CON	Invalid, chipping
3	А	44.1	29.2	60.7	1.8	2256.7	0.8	1.0	0.8	CON	Valid, failed through matrix
4	D	42.1	45.0	60.7	13.2	3684.5	3.6	1.1	3.9	CON	Valid, failed through matrix
5	A	42.0	35.7	60.7	2.5	2759.1	0.9	1.0	0.9	CON	Valid, failed through matrix
6	А	42.0	54.4	60.7	7.9	4204.3	1.9	1.1	2.1	CON	Valid, failed through matrix
7	D	38.0	35.0	60.7	6.7	3684.5	1.8	1.1	2.0	CON	Valid, failed through matrix
8	D	38.1	35.0	60.7	13.1	3684.5	3.6	1.1	3.9	CON	Valid, failed through matrix and fine to coarse grained clasts
9	A	38.1	28.0	60.7	7.4	2164.0	3.4	1.0	3.3	CON	Valid, failed through matrix and fine to coarse grained clasts
10	A	38.0	-	-	-		-	-	-	CON	Invalid, chipping
11	D	30.2	44.0	60.7	9.8	3684.5	2.6	1.1	2.9	CON	Valid, failed through matrix and fine to coarse grained clasts
12	D	30.3	-	-	-		-	-	-	CON	Invalid, chipping
13	А	30.2	33.0	60.7	9.0	2550.4	3.5	1.0	3.5	CON	Valid, failed through matrix and fine to coarse grained clasts
14	D	38.1	100.0	60.7	13.0	3684.5	3.5	1.1	3.9	CON	Valid, failed through matrix
15	D	38.2	-	-	-	-	-	-	-	CON	Invalid, chipping
16	А	38.5	-	-	-	- 4		-	-	CON	Invalid, chipping
17	А	38.5	56.1	60.7	9.8	4338.8	2.2	1.1	2.5	CON	Valid, failed through matrix and fine to coarse grained clasts
18	D	40.9	140.0	60.7	8.3	3684.5	2.3	1.1	2.5	CON	Valid, failed through matrix and fine to coarse grained clasts
19	D	41.1	140.0	60.7	20.1	3684.5	5.4	1,1	5.9	CON	Valid, failed through matrix and fine to coarse grained clasts
20	A	41.1	-	-	-	-	-		-	CON	Invalid, chipping
21	A	39.5	75.0	60.7	0.7	5796.4	0.1	1.2	0.1	CON	Valid, failed through matrix
22	D	44.2	100.0	60.7	4.7	3684.5	1.3	1.1	1.4	CON	Valid, failed through matrix and fine to medium grained clasts
23	A	44.4	30.0	60.7	6.2	2318.6	2.7	1.0	2.6	CON	Valid, failed through matrix and fine to medium grained clasts
24	D	44.9	140.0	60.7	8.2	3684.5	2.2	1.1	2.4	CON	Valid, failed through matrix and fine to medium grained clasts
								Ť			
										-	
		1									
		1									
ock Types: Con	iglomerate (CON)	, Sandstone (SS)		1		1	1	ļ	ļ	1	1
	A.H	loldijk					2021-JAN-12				F.Champagne
		TED BY					DATE				CHECKED BY
							Golder Associates Lt	d.			· ·

GOLDER				
A A STATE				ASTM D5731
Project No.:	19122805/7000	Load Conf	igurations and Specimen Shape Requirement	
Project:	Morice River Crossing Geotechnical Investigation	(D)	Diametral Test, L > 0.5D	
Location:	Houston BC, KP 558+785	(A)	Axial Test, 0.3W < D < W	
Client:	Coastal GasLink	(B)	Block Test, L > 0.5D & 0.3W < D < W	
Borehole:	BH20-MOR-04	(L)	Irregular Lump Test, L > 0.5D & 0.3W < D < W where W = $(W_1 + W_2)/2$	

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	I _{s50} (MPa)	Rock Type	Remarks
1	D	89.4	80.0	60.7	10.8	3684.5	2.9	1.1	3.2	CON	Valid, failed through matrix and medium to coarse grained clasts
2	D	85.4	44.0	60.7	16.5	3684.5	4.5	1.1	4.9	CON	Valid, failed through matrix and medium to coarse grained clasts
3	D	85.5	200.0	60.7	6.3	3684.5	1.7	1.1	1.9	CON	Valid, failed through matrix and coarse grained clasts
4	D	82.4	70.0	60.7	2.4	3684.5	0.7	1.1	0.7	CON	Valid, failed through coarse grained clasts
5	D	82.4	65.0	60.7	8.0	3684.5	2.2	1.1	2.4	CON	Valid, failed through coarse grained clasts
6	A	82.5	44.0	60.7	13.3	3400.6	3.9	1.1	4.2	CON	Valid, failed through coarse grained clasts
7	A	78.0	51.8	60.7	3.1	4003.4	0.8	1.1	0.8	CON	Valid, failed through matrix and coarse grained clasts
8	D	81.0	230.0	60.7	6.2	3684.5	1.7	1.1	1.8	CON	Valid, failed through matrix and medium to coarse grained clasts
9	D	76.0	115.0	60.7	8.2	3684.5	2.2	1.1	2.4	CON	Valid, failed through matrix
10	A	72.0	46.0	60.7	8.6	3555.1	2.4	1.1	2.6	CON	Valid, failed through matrix
11	A	78.0	51.0	60.7	7.4	3941.6	1.9	1.1	2.1	CON	Valid, failed through matrix
12	D	78.9	220.0	60.7	14.3	3684.5	3.9	1.1	4.2	CON	Valid, failed through matrix
13	D	72.1	120.0	60.7	20.5	3684.5	5.6	1.1	6.1	CON	Valid, failed through matrix and coarse grained clasts
14	A	72.0	55.0	60.7	3.2	4250.7	0.8	1.1	0.9	CON	Valid, failed through matrix and coarse grained clasts
15	D	76.3	160.0	60.7	1.3	3684.5	0.4	1.1	0.4	CON	Valid, failed through matrix and coarse grained clasts
16	A	76.2	-	-	-			-	-	SS	Invalid, chipping
17	D	76.3	80.0	60.7	2.3	3684.5	0.6	1.1	0.7	SS	Valid, failed through matrix
18	D	56.5	-	-	-	-	-	-	-	CON	Invalid, chipping
19	A	56.4	-	-	-	-	-		-	CON	Invalid, chipping
20	D	53.5	70.0	60.7	11.2	3684.5	3.0	. 1.1	3.3	CON	Valid, failed through matrix and medium to coarse grained clasts
21	A	54.0	25.0	60.7	3.4	1932.1	1.7	0.9	1.6	CON	Valid, failed through matrix and medium to coarse grained clasts
22	D	62.0	110.0	60.7	5.2	3684.5	1.4	1.1	1.5	CON	Valid, failed through matrix
23	D	62.0	50.0	60.7	6.6	3684.5	1.8	1.1	1.9	CON	Valid, failed through matrix
24	A	62.0	25.0	60.7	7.5	1932.1	3.9	0.9	3.7	CON	Valid, failed through matrix
25	A	62.0	25.0	60.7	3.6	1932.1	1.9	0.9	1.8	CON	Valid, failed through matrix
26	D	68.0	140.0	60.7	4.6	3684.5	1.2	1.1	1.4	CON	Valid, failed through matrix and coarse grained clasts
27	A	68.0	-	-	-	-	-	-		CON	Invalid, chipping
28	D	68.8	-	-	-	-	-	-	-	CON	Invalid, chipping
29	D	67.9	140.0	60.7	5.6	3684.5	1.5	1.1	1.7	CON	Valid, failed through matrix and coarse grained clasts
30	D	52.3	190.0	60.7	5.7	3684.5	1.5	1.1	1.7	CON	Valid, failed through matrix and medium to coarse grained clasts
31	D	52.3	92.0	60.7	6.0	3684.5	1.6	1.1	1.8	CON	Valid, failed through matrix and medium to coarse grained clasts
32	D	49.3	180.0	60.7	6.2	3684.5	1.7	1.1	1.8	CON	Valid, failed through matrix and coarse grained clasts
33	D	49.3	81.0	60.7	4.8	3684.5	1.3	1.1	1.4	CON	Valid, failed through matrix and coarse grained clasts
34	A	49.2	26.0	60.7	2.4	2009.4	1.2	1.0	1.1	CON	Valid, failed through coarse grained clasts
35	D	49.3	200.0	60.7	3.1	3684.5	0.8	1.1	0.9	CON	Valid, failed through coarse grained clasts
36	D	44.6	105.0	60.7	7.2	3684.5	2.0	1.1	2.1	SS	Valid, failed through matrix
37	A	44.7	46.0	60.7	2.9	3555.1	0.8	1.1	0.9	SS	Valid, failed through matrix
Rock Types: Con	nglomerate (CON),	Sandstone (SS)						•			
	A.H	oldijk					2021-JAN-12				F.Champagne
		ED BY					DATE				CHECKED BY
							Golder Associates L	td.			

GOLDER				
A A CALL				ASTM D5731
Project No.:	19122805/7000	Load Config	urations and Specimen Shape Requirement	
Project:	Morice River Crossing Geotechnical Investigation	(D)	Diametral Test, L > 0.5D	
Location:	Houston BC, KP 558+785	(A)	Axial Test, 0.3W < D < W	
Client:	Coastal GasLink	(B)	Block Test, L > 0.5D & 0.3W < D < W	
Borehole:	BH20-MOR-04	(L)	Irregular Lump Test, $L > 0.5D \& 0.3W < D < W$ where $W = (W_1 + W_2)/2$	

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	I _{s50} (MPa)	Rock Type	Remarks
38	D	31.0	145.0	60.7	4.8	3684.5	1.3	1.1	1.4	CON	Valid, failed through matrix and medium to coarse grained clasts
39	A	31.0	60.0	60.7	6.8	4637.1	1.5	1.1	1.7	CON	Valid, failed through matrix
40	D	31.0	-	-	-	-	-	-	-	CON	Invalid, chipping
41	A	31.0	30.0	60.7	7.8	2318.6	3.3	1.0	3.3	CON	Valid, failed through matrix and medium to coarse grained clasts
42	D	38.5	-	-		-	-	-	-	CON	Invalid, chipping
43	D	38.5	110.0	60.7	17.3	3684.5	4.7	1.1	5.1	CON	Valid, failed through matrix and medium to coarse grained clasts
44	D	35.5	110.0	60.7	7.1	3684.5	1.9	1.1	2.1	CON	Valid, failed through matrix and medium to coarse grained clasts
45	A	35.5	38.0	60.7	9.8	2936.9	3.3	1.0	3.4	CON	Valid, failed through matrix and medium to coarse grained clasts
46	A	35.5	52.0	60.7	10.8	4018.9	2.7	1.1	3.0	CON	Valid, failed through matrix and medium to coarse grained clasts
47	D	43.3	170.0	60.7	5.0	3684.5	1.4	1.1	1.5	CON	Valid, failed through matrix and coarse grained clasts
48	D	43.4	60.0	60.7	7.3	3684.5	2.0	1.1	2.2	CON	Valid, failed through matrix and coarse grained clasts
49	A	43.3	41.0	60.7	6.9	3168.7	2.2	1.1	2.3	CON	Valid, failed through matrix and medium to coarse grained clasts
50	A	43.4	27.0	60.7	7.3	2086.7	3.5	1.0	3.3	CON	Valid, failed through matrix and medium to coarse grained clasts
51	D	20.2	90.0	60.7	0.6	3684.5	0.2	1.1	0.2	CON	Valid, failed through matrix and medium to coarse grained clasts
52	A	20.1	40.0	60.7	2.5	3091.4	0.8	1.0	0.8	CON	Valid, failed through matrix
53	A	20.2	24.0	60.7	7.7	1854.9	4.1	0.9	3.9	CON	Valid, failed through matrix
54	D	26.3	140.0	60.7	11.5	3684.5	3.1	1.1	3.4	CON	Valid, failed through matrix and medium to coarse grained clasts
55	D	26.4	60.0	60.7	19.3	3684.5	5.2	1.1	5.7	CON	Valid, failed through matrix and medium to coarse grained clasts
56	A	26.4	60.0	60.7	1.5	4637.1	0.3	1.1	0.4	CON	Valid, failed through matrix and medium to coarse grained clasts
57	D	22.0	-	-	-	-	-		-	CON	Invalid, chipping
58	D	22.2	200.0	60.7	15.1	3684.5	4.1	1.1	4.5	CON	Valid, failed through matrix and fine to coarse grained clasts
59	D	22.2	120.0	60.7	8.4	3684.5	2.3	1.1	2.5	CON	Valid, failed through matrix and fine to coarse grained clasts
60	A	22.3	40.0	60.7	5.4	3091.4	1.8	1.0	1.8	CON	Valid, failed through matrix and fine to coarse grained clasts
								· · · · ·			
										7	
									7		
						1	1				
										1	
						1	1				
										1	
Rock Types: Cor	nglomerate (CON)	Sandstone (SS)	<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>		1	I
		loldijk					2021-JAN-12				F.Champagne
		ED BY					DATE				CHECKED BY
l	IESI						DATE				

Golder Associates Ltd.

ASTM D5731

Project No.:	19122805/7000	Load Configurations and Specimen Shape Requirement				
Project:	Morice River Crossing Geotechnical Investigation	(D) Diametral Test, L > 0.5D				
Location:	Houston BC, KP 558+900	(A) Axial Test, 0.3W < D < W				
Client:	Coastal GasLink	(B) Block Test, L > 0.5D & 0.3W < D < W				
Borehole:	BH20-MOR-05	(L) Irregular Lump Test, $L > 0.5D \& 0.3W < D < W$ where $W = (W_1 + W_2)/2$				

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	I _{s50} (МРа)	Rock Type	Remarks
1	D	59.8	201.8	60.7	3.3	3684.5	0.9	1.1	1.0	CON	Valid, failed through matrix
2	A	59.9	141.8	60.7	5.0	10959.1	0.5	1.4	0.6	CON	Valid, failed through matrix
3	A	59.9	50.5	60.7	4.7	3902.9	1.2	1.1	1.3	CON	Valid, failed through matrix
4	D	58.6	80.0	60.7	3.9	3684.5	1.0	1.1	1.1	CON	Valid, failed through matrix
5	А	58.6	51.3	60.7	8.4	3964.8	2.1	1.1	2.4	CON	Valid, failed through matrix
6	D	58.7	50.0	60.7	9.1	3684.5	2.5	1.1	2.7	CON	Valid, failed through matrix
7	A	58.7	45.7	60.7	9.1	3532.0	2.6	1.1	2.8	CON	Valid, failed through matrix
8	A	58.2	61.6	60.7	4.8	4760.8	1.0	1.2	1.2	CON	Valid, failed through matrix
9	D	54.3	75.0	60.7	0.9	3684.5	0.2	1.1	0.3	CON	Valid, failed thorugh existing micro defect
10	A	54.2	70.8	60.7	2.3	5471.8	0.4	1.2	0.5	CON	Valid, failed through matrix
11	A	54.3	51.8	60.7	6.8	4003.4	1.7	1.1	1.9	CON	Valid, failed through matrix
12	A	50.2	35.3	60.7	9.3	2728.2	3.4	1.0	3.5	CON	Valid, failed through matrix
13	D	48.6	-	-	-		-	-	-	CON	Invalid, chipping
14	D	44.5	55.0	60.7	8.6	3684.5	2.3	1.1	2.6	CON	Valid, failed through matrix
15	D	44.5	45.0	60.7	10.5	3684.5	2.9	1.1	3.1	CON	Valid, failed through matrix and fine to medium grained clasts
16	D	44.4	40.0	60.7	12.4	3684.5	3.4	1.1	3.7	CON	Valid, failed through matrix
17	A	44.4	42.0	60.7	10.8	3246.0	3.3	1.1	3.5	CON	Valid, failed through matrix
18	A	44.5	40.9	60.7	4.9	3161.0	1.6	1.1	1.6	CON	Valid, failed through matrix
19	A	44.6	-	-	-	-	-		-	CON	Invalid, chipping
20	D	41.7	65.0	60.7	6.3	3684.5	1.7	1.1	1.9	CON	Valid, failed through matrix
21	A	41.7	55.6	60.7	3.2	4297.1	0.8	1.1	0.9	CON	Valid, failed through coarse grained clasts
22	D	41.7	115.0	60.7	10.3	3684.5	2.8	1.1	3.1	CON	Valid, failed through matrix and fine to medium grained clasts
23	A	41.6	55.7	60.7	13.7	4304.8	3.2	1.1	3.6	CON	Valid, failed through matrix and fine to medium grained clasts
24	D	35.6	70.0	60.7	10.4	3684.5	2.8	1.1	3.1	CON	Valid, failed through matrix and fine to coarse grained clasts
25	D	35.6	65.0	60.7	8.1	3684.5	2.2	1.1	2.4	CON	Valid, failed through matrix and fine to coarse grained clasts
26	D	35.5	60.0	60.7	12.9	3684.5	3.5	1.1	3.8	CON	Valid, failed through matrix and fine to coarse grained clasts
27	A	35.6	57.7	60.7	8.0	4459.4	1.8	1.1	2.0	CON	Valid, failed through matrix and fine to coarse grained clasts
28	A	35.5	52.2	60.7	10.5	4034.3	2.6	1.1	2.9	CON	Valid, failed through matrix and fine to coarse grained clasts
29	A	35.5	-	60.7	-	-	-	-	-	CON	Invalid, chipping
30	D	33.7	50.0	60.7	2.8	3684.5	0.8	1.1	0.8	CON	Valid, failed thorugh existing micro defect
31	D	33.7	-	60.7	-	-	-	-	-	CON	Invalid, chipping
32	D	33.8	55.0	60.7	5.9	3684.5	1.6	1.1	1.7	CON	Valid, failed through matrix
33	A	33.8	38.3	60.7	5.0	2960.0	1.7	1.0	1.8	CON	Valid, failed through matrix
34	A	33.7	44.2	60.7	22.1	3416.0	6.5	1.1	6.9	CON	Valid, failed through matrix and fine to coarse grained clasts
35	A	33.7	45.7	60.7	3.9	3532.0	1.1	1.1	1.2	CON	Valid, failed through matrix
36	D	30.6	42.5	60.7	2.1	3684.5	0.6	1.1	0.6	CON	Valid, failed through matrix
37	A	30.6	35.5	60.7	2.2	2743.6	0.8	1.0	0.8	CON	Valid, failed through matrix
Rock Types: Con	nglomerate (CON),	Sandstone (SS)									
	A.H	oldijk					2021-JAN-12				F.Champagne
	TEST	ED BY					DATE				CHECKED BY

Golder Associates Ltd.

ASTM D5731

Project No.:	19122805/7000	Load Configurations and Specimen Shape Requ	lirement
Project:	Morice River Crossing Geotechnical Investigation	(D) Diametral Test, L > 0.5D	
Location:	Houston BC, KP 558+900	(A) Axial Test, 0.3W < D < W	
Client:	Coastal GasLink	(B) Block Test, L > 0.5D & 0.3W < D <	W
Borehole:	BH20-MOR-05	(L) Irregular Lump Test, L > 0.5D & 0.	$3W < D < W$ where $W = (W_1 + W_2)/2$

Test #	Туре	Depth (m)	Length, L (mm)	Diameter, D (mm)	Load, P (kN)	De ² (mm ²)	l _s (MPa)	F	l _{s50} (MPa)	Rock Type	Remarks
38	A	30.6	37.8	60.7	1.1	2921.4	0.4	1.0	0.4	CON	Valid, failed through matrix
39	A	30.6	37.4	60.7	0.8	2890.5	0.3	1.0	0.3	CON	Valid, failed through matrix
40	A	30.7	21.7	60.7	1.7	1677.1	1.0	0.9	0.9	CON	Valid, failed through matrix
41	A	30.7	24.3	60.7	2.1	1878.0	1.1	0.9	1.1	CON	Valid, failed through matrix
42	D	26.6	50.0	60.7	12.6	3684.5	3.4	1.1	3.7	CON	Valid, failed through matrix
43	D	26.5	45.0	60.7	7.4	3684.5	2.0	1.1	2.2	CON	Valid, failed through matrix
44	А	26.6	34.4	60.7	10.8	2658.6	4.1	1.0	4.1	CON	Valid, failed through matrix
45	A	26.5	37.3	60.7	11.8	2882.8	4.1	1.0	4.2	CON	Valid, failed through matrix
46	A	26.5	26.9	60.7	6.6	2079.0	3.2	1.0	3.1	CON	Valid, failed through matrix
47	A	22.4	-	-			-	-	-	CON	Invalid test, chipping
48	А	22.4	-	-	-		-	-	-	CON	Invalid test, chipping
								1			
	ļ										
Rock Types: Con											
		oldijk					2021-JAN-12				F.Champagne
	TEST	ED BY					DATE				CHECKED BY
	Golder Associates Ltd.										

Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method

Summary of Test Results

ASTM D7625

Project No.:	19122805/7000	Apparatus Type:	West Cerchar
Project:	Morice River Crossing Geotechnical Investigation	Model:	GCTS RAA-100
Location:	Morice River, BC	Stylus Hardness:	Rockwell Hardness HRC55
Client:	Coastal Gaslink	Stylus Diameter:	9.53mm
Lab ID No:	B20-443		

Borehole	Sample	Depth	Lithology	Moisture (%)	Test Surface	Cerchar (CAl _s)	Cerchar (CAI)	Abrasiveness Classification	Photo Reference	Comments
BH20-MOR-02	48	60.82-61.08	Conglomerate	6.45	Saw Cut	0.31	0.79	Low abrasiveness	1 & 2	
BH20-MOR-02	49	67.86-68.10	Conglomerate	7.99	Saw Cut	0.21	0.69	Low abrasiveness	3 & 4	
BH20-MOR-02	51	80.16-80.40	Conglomerate	3.27	Saw Cut	0.24	0.72	Low abrasiveness	5&6	
BH20-MOR-03	32	36.57-36.85	Conglomerate	4.06	Saw Cut	0.62	1.09	Medium abrasiveness	7 & 8	
BH20-MOR-05	29	33.37-33.63	Conglomerate	4.20	Saw Cut	0.74	1.21	Medium abrasiveness	9 & 10	
BH20-MOR-05	31	55.94-56.12	Sandstone	1.00	Saw Cut	0.57	1.04	Medium abrasiveness	11 & 12	
								7		

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	December 24, 2020	GP	December 28, 2020
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2

Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

Laboratory Determination of Abrasiveness of Rock Using the **CERCHAR** Method

Summary of Test Results

	-				ASTM D762
Project No.:	19122805/7000		Apparatus Type:	West Cerchar	
Project:	Morice River Crossing Geote	chnical Investigation	Model:	GCTS RAA-100	
Location:	Morice River, BC		Stylus Hardness:	Rockwell Hardness HRC55	
Client:	Coastal Gaslink		Stylus Diameter:	9.53mm	
Lab ID No:	B20-443				
	Photos 1 & 2: BH20-MOR-02 Sa 4	8 Cerchar before and after testing		Photos 3 & 4: BH20-MOR-02 Sa 49 Ce	erchar before and after testing
			Ń		

Photos 5 & 6: BH20-MOR-02 Sa 51 Cerchar before and after testing

Photos 7 & 8: BH20-MOR-03 Sa 32 Cerchar before and after testing

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	December 24, 2020	GP	December 28, 2020						
TESTED BY	DATE	CHECKED BY	DATE						

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method

Summary of Test Results

ASTM D7625

			7.6 TM D7 626
Project No.:	19122805/7000	Apparatus Type:	West Cerchar
Project:	Morice River Crossing Geotechnical Investigation	Model:	GCTS RAA-100
Location:	Morice River, BC	Stylus Hardness:	Rockwell Hardness HRC55
Client:	Coastal Gaslink	Stylus Diameter:	9.53mm
Lab ID No:	B20-443		

Photos 9 & 10: BH20-MOR-05 Sa 29 Cerchar before and after testing

Photos 11 & 12: BH20-MOR-05 Sa 31 Cerchar before and after testing

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

EF	December 24, 2020	GP	December 28, 2020						
TESTED BY	DATE	CHECKED BY	DATE						

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

Porosity, Density & Absorption Determination Using Saturation and Buoyancy Techniques

ISRM Suggested Methods

Project No.:	19122805/7000
Project:	Morice River Crossing Geotechnical Investigation
Location:	Morice River, BC
Client:	Coastal Gaslink Ltd.
Lab ID No:	B20-443

Borehole	BH20-MOR-05	BH20-MOR-06	BH20-MOR-06		
Sample Number	* 24	4	5		
Depth (m)	19.35-19.51	5.49-5.79	7.32-7.47		
Porosity (%)		18.49	20.85		
Dry Density (kg/m ³)	1976	2067	1998		
Absorption (%)	-	8.93	10.41		
			I	T	
Borehole					
Sample Number					
Depth (m)					
Porosity (%)					
Dry Density (kg/m ³)					
Absorption (%)					
			\sim		
Borehole					
Sample Number					
Depth (m)			· · ·		
Porosity (%)					
Dry Density (kg/m³)					
Absorption (%)					
Borehole					
Sample Number					

Sample Number			
Depth (m)			
Porosity (%)			
Dry Density (kg/m ³)			
Absorption (%)			

* Sample BH20-MOR-05 Sa 24 was more soil like and not suitable for SSD method. Wax method used instead. Porosity and absorption not calculated.

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

G. Patton	February 2, 2021	D. Lim	February 4, 2021
TESTED BY	DATE	CHECKED BY	DATE

Golder Associates Ltd. 300, 3811 North Fraser Way, Burnaby, British Columbia, Canada V5J 5J2 Tel: 604-412-6899 Fax: 604-412-6816 www.golder.com

BH20-MOR-02 BOX 1/7 52.4 m to 60.0 m

19122 SUS 12000 NULLE RIVER CROSSING BALD-HAR- 02 TECH GH56 TO LE M

3 09

Box

FC

BH20-MOR-02 BOX 3/7 64.56 m to 68.68m

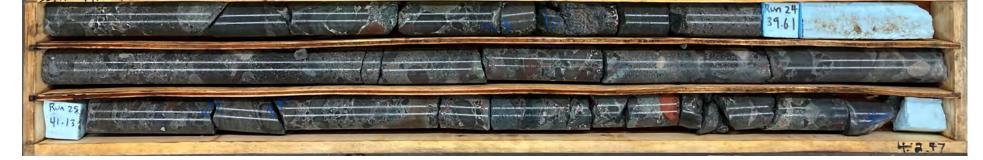
			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE				
	PREPARED	FC	CORE PHO	TOGRAPHS	S: BH20	-MOR-02 BOXES 1-3	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	- Rev. FIGUE	
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011 Page 165	

BH20-MOR-02 BOX 4/7 68.68 m to 72.97 m

BH20-MOR-02 BOX 6/7 77.43 m to 81.36 m

			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE				
	PREPARED	FC	CORE PHO	TOGRAPHS	5: BH20	-MOR-02 BOXES 4-6	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	Rev	FIGURE
	APPROVED	TF	19122805	7000	7000	Request QGC2021-011 Page 166	E PHOTO

BH20-MOR-02 BOX 7/7 81.36 m to 85.92 m



CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12					
	PREPARED	FC	CORE PHO	TOGRAPH	S: BH20	-MOR-02 BOX 7	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	Rev	FIGURE
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011 Page 167	ното

BH20-MOR-03 BOX 1/3 29.57m to 35.15 m

1912

BH20-MOR-03 BOX 3/4 38.44 m to 42.47 m

COASTAL GASLINK			MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE	CORE PHOTOGRAPHS: BH20-MOR-03 BOXES 1-3			
	PREPARED	FC	CORE PHO	TOGRAPHS	5: BH20	-MOR-03 BOXES 1-3	
GOLDER	DESIGN	FC					
	REVIEW	АН	PROJECTNo	Phase	Task	FIGU	
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011 Page 168	

+:2.57

BH20-MOR-03 BOX 1/3 29.57m to 35.15 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12					
	PREPARED	FC	CORE PHO	TOGRAPH	S: BH20	-MOR-03 BOX 4	
GOLDEF	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	FIGURE	
	APPROVED	TF	19122805	7000	7000	Request QGC2021-011 Page 169	

BH20-MOR-04 BOX 1/17 17.68 m to 21.94 m

BH20-MOR-04 BOX 3/17 26.32 m to 30.75 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION			
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE			
	PREPARED	FC	CORE PHO	TOGRAPHS	S: BH20	-MOR-04 BOXES 1-3
GOLDER	DESIGN	FC				
	REVIEW	АН	PROJECTNo	Phase	Task	FIGUE
	APPROVED	TF	19122805	7000	7000	Request OGC2021-01 Page CORE PHOT

BH20-MOR-04 BOX 4/17 30.75 m to 35.05 m

BH20-MOR-04 BOX 5/17 35.05 m to 39.21 m

BH20-MOR-04 BOX 6/17 39.21 m to 43.40 m

			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	CORE PHOTOGRAPHS: BH20-MOR-04 BOXES 4-6				
	PREPARED	FC	CORE PHO	TOGRAPHS	S: BH20	-MOR-04 BOXES 4-6	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	_ Rev	FIGUR
	APPROVED	TF	19122805	7000	7000	Request OCC2021-011 Page 171	PHOT

BH20-MOR-04 BOX 7/17 43.40 m to 47.99 m

BH20-MOR-04 BOX 8/17 47.99 m to 52.16 m

BH20-MOR-04 BOX 9/17 52.16 m to 56.42 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE	CORE PHOTOGRAPHS: BH20-MOR-04 BOXES 7-9			
	PREPARED	FC	CORE PHO	TOGRAPHS	5: BH20	-MOR-04 BOXES 7-9	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	- Rev. FIG	IGUF
	APPROVED	TF	19122805	7000	7000	Request QGC2021-011 Page 172	ОТ

BH20-MOR-04 BOX 10/7 56.42 m to 60.66 m

BH20-MOR-04 BOX 11/7 60.66 m to 64.87 m

BH20-MOR-04 BOX 12/7 64.87 m to 69.14 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	CORE PHOTOGRAPHS: BH20-MOR-04 BOXES 10-12				
	PREPARED	FC	CORE PHO	TOGRAPHS	5: BH20	-MOR-04 BOXES 10-12	
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	- Rev	FIGUE
	APPROVED	TF	19122805	7000	7000	Request QGC2021-011 Page 173	РНОТ

BH20-MOR-04 BOX 13/17 69.14 m to 73.44 m

BH20-MOR-04 BOX 15/17 77.70 m to 82.14 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION			
CONSULTANT	YYYY-MM-DD	2021-01-12	CORE PHOTOGRAPHS: BH20-MOR-04 BOXES 13-15			
	PREPARED	FC	CORE PHO	TOGRAPHS	S: BH20	-MOR-04 BOXES 13-15
GOLDER	DESIGN	FC				
	REVIEW	AH	PROJECT No	Phase	Task	FIGU
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011 Page 174

BH20-MOR-04 BOX 16/17 82.14 m to 86.68 m

BH20-MOR-05 BOX 17/17 86.68 m to 90.68 m

CLIENT COASTAL GASLINK			MORICE RIVER CROSSING GEOTECHNICAL					
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE	CORE PHOTOGRAPHS: BH20-MOR-04 BOXES 16-17				
	PREPARED	FC	CORE PHO	TOGRAPHS	S: BH20	-MOR-04	BOXES 16-17	
GOLDER	DESIGN	FC						
	REVIEW	AH	PROJECT No	Phase	Task		Rev	FIGURE
	APPROVED	TF	19122805	7000	7000	Request		PHOTO

BH20-MOR-05 BOX 1/10 21.34 m to 24.95 m

BH20-MOR-05 BOX 3/10 29.02 m to 33.35 m

CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION					
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE					
	PREPARED	FC	CORE PHOTOGRAPHS: BH20-MOR-05 BOXES 1-3					
GOLDER	DESIGN	FC						
	REVIEW	АН	PROJECT No	Phase	Task	FIGUR		
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011		

BH20-MOR-05 BOX 4/10 33.35 m to 37.42 m

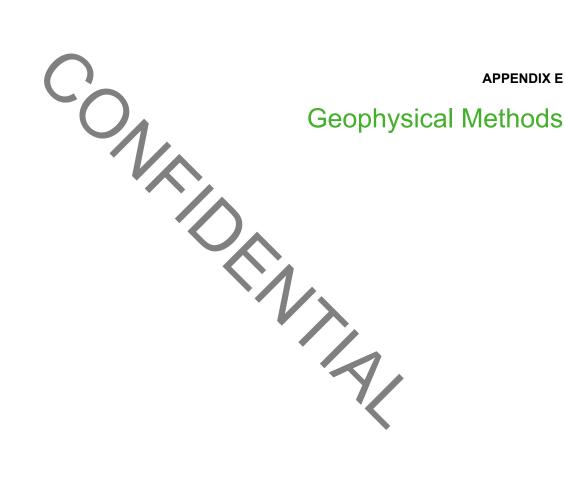
BH20-MOR-05 BOX 5/10 37.42 m to 41.65 m

BH20-MOR-05 BOX 6/10 41.65 m to 45.78 m

COASTAL GASLINK			MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION				
CONSULTANT	YYYY-MM-DD	2021-01-12	CORE PHOTOGRAPHS: BH20-MOR-05 BOXES 4-6				
	PREPARED	FC					
GOLDER	DESIGN	FC					
	REVIEW	AH	PROJECT No	Phase	Task	- Rev	FIGUE
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011	PHOT

BH20-MOR-05 BOX 7/10 45.78 m to 49.8 m

BH20-MOR-05 BOX 9/10 54.18 m to 58.9 m


CLIENT COASTAL GASLINK			PROJECT MORICE RIVER CROSSING GEOTECHNICAL INVESTIGATION					
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE	CORE PHOTOGRAPHS: BH20-MOR-05 BOXES 7-9				
	PREPARED	FC	CORE PHO	TOGRAPHS	5: BH20	-MOR-05 BOXES 7-9		
GOLDER	DESIGN	FC						
	REVIEW	AH	PROJECT No	Phase	Task	- Rev.	FIGUR	
	APPROVED	TF	19122805	7000	7000	Request QGC2021-011 Page 178	нот	

BH20-MOR-05 BOX 10/10 58.9 m to 60.0 m

COASTAL GASLINK			PROJECT MORICE RIV INVESTIGAT		SING GE	OTECHNICAL
CONSULTANT	YYYY-MM-DD	2021-01-12	TITLE			
	PREPARED	FC	CORE PHO	TOGRAPH	S: BH20	-MOR-05 BOX 10
GOLDEF	DESIGN	FC				
	REVIEW	AH	PROJECTNo	Phase	Task	FIGUR
	APPROVED	TF	19122805	7000	7000	Request OGC2021-011 Page 179

1.0 METHOD

1.1 Seismic Refraction Tomography

In the seismic refraction method, an acoustic wave is generated at the surface which propagates radially into the subsurface. On encountering boundaries between media having contrasting mechanical properties, including density, elasticity, and consequently seismic velocity, the incident wave pulse is partially reflected and partially transmitted into underlying strata, as shown in Plate 1. The ray-path of the incident-transmitted pulse is bent, or refracted, at the boundary in accordance with Snell's Law. In particular, if seismic velocity increases across the boundary, the ray path is refracted towards the boundary. As the angle of incidence increases, so does the angle of refraction until for some critical incidence angle, dependant on the relative seismic velocity, the refracted wave pulse travels parallel to the boundary and acts as a moving source of secondary wave pulses which propagate upward into overlying strata as reflected head waves. The refraction head waves ultimately reach the surface where their arrival is detected by a linear array of geophones. By measuring the elapsed time between initial pulse generation at the shot-point and subsequent arrival of critically refracted head waves at successively more distant geophones, relatively straight-forward calculations yield estimates of layer velocities and thicknesses. In general, seismic interpretation methods assume the existence of relatively shallow–dipping layered geology with increasing layer velocities at increasing depth.

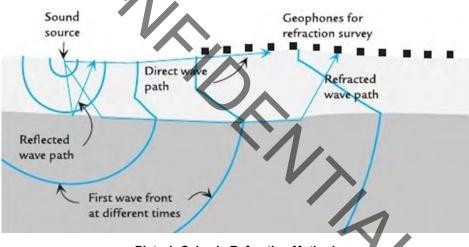


Plate 1: Seismic Refraction Method

Ranges of velocities of compressional p-waves for representative earth materials are listed in Table 1.

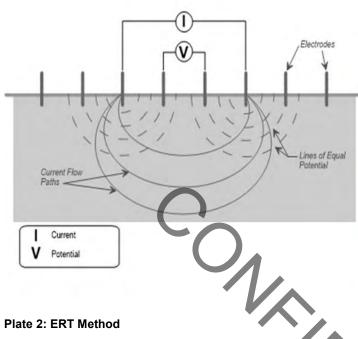
Table 1: Approximate Range of Seismic P-Wave Velocity of Common Geological Materials (Redpath, 1973 & Reynolds, 2011)

Material	Seismic Velocity Range [m/sec]
Air	330
Water	1,450 to 1,530
Soil	100 to 500
Unconsolidated Gravel, Rubble, or Sand (dry)	468 to 915
Sand (dry, loose)	200 to 1,000
Sand (water saturated, loose)	1,500 to 2,000
Sand and Gravel	400 to 2,300
Clay	610 to 1,830
Sandstone	1,400 to 4,500
Shale	2,000 to 4,100
Limestone	2,140 to 6,100

Seismic velocity generally increases with increasing density. The main factors controlling seismic velocity are porosity, soil/rock type, grain-size, compaction, water content, and temperature.

Typically, seismic depth determinations are accurate to within 10% to 20%, subject to the assumptions of refraction techniques including:

- Layered subsurface;
- Generally, layer slope variations of less than 20°; and
- Velocities increase with depth and relatively gradual changes in layer topography.

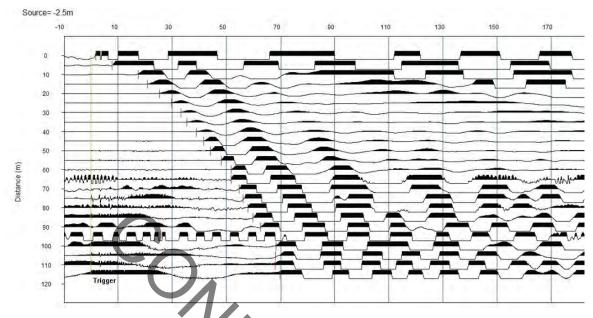

1.2 Electrical Resistivity Tomography

The resistivity of soil and rock depends in part on the constituent materials, as shown in Table 2. Typically, grainsize, porosity, rock-type, temperature, ice content, and water saturation are the primary factors controlling resistivity. Coarse-grained sediments such as sands and gravels are resistive compared to fine-grained sediments such as clays and silts. Fresh water saturation within clay-free soils reduces resistivity in accordance with Archie's Law, e.g. water saturated sands have a lower resistivity than dry sand. Increasing the concentration of total dissolved solids (TDS), particularly salts and metals, in groundwater normally reduces resistivity significantly. Variations in the electrical properties of different geological formations often enables effective geological mapping using electrical geophysical survey methods.

Material	Resistivity (Ohm-m)	Conductivity (mS/m)
Fresh Water	2,000	0.5
Sea Water	0.033	30,000
Dry Sandy Soil	80 – 1,050	1 - 12.5
Sandy Clay/Clayey Sand	30 - 215	4.7 - 33
Gravel (dry)	1,400	0.7
Gravel (saturated)	100	10
Silts	10 - 1,000	1 - 100
Clays	1 - 100	10 - 1,000
Granite	1,000 - 100,000	0.01 - 1
Limestone	500 - 2,000	0.5 - 2
Sandstone	100 – 500	2 - 10
Shale	10 - 1,000	1 - 100
Mudstone	20 - 60	17 - 50
Dry Salt	1,000 - 100,000	0.01 - 1
Permafrost	1,000 - 10,000	0.1 - 1
Ice	100,000	0.01

Table 2: Resistivity and Conductivity Ranges of Common Geological Materials (Milsom 2001 & Reynolds 2011)

The ERT method measures the electrical resistivity of the subsurface, both laterally and vertically, to infer rock/soil types and stratigraphy. Ground resistivity is measured by applying a direct current to the ground using two current electrodes and measuring the potential difference, or voltage, between two potential electrodes (Plate 2). The depth of investigation is largely a function of electrode separation, with larger electrode separations providing information to a greater depth.


Plate 2: ERT Method

Multiple stainless-steel electrodes are positioned along a survey line and connected to the resistivity meter by a series of cables with multiple connection points. Software controlling the resistivity meter uses multiple electrodes to collect measurements at various user-specified separations, providing high-density data along the entire length of the profile. The Wenner-Schlumberger array type was used to collect data for this project. The Wenner-Schlumberger array type maintains the potential electrodes at a fixed midpoint, while iteratively increasing the current electrode spacing on either side of the potential electrode midpoint. This process is repeated for all userspecified combinations of potential electrode midpoints and current electrode separations. The Wenner-Schlumberger array generally provides deep penetration relative to electrode spacing and results in a good compromise between delineating horizontal structures and steeply dipping structures in the subsurface.

2.0 DATA PROCESSING

2.1 Seismic Refraction Data Processing

Seismic refraction data were processed using SeisImager, a commercial software package from Geometrics Inc. First break picks were completed manually in the PickWin software package and input into the PlotRefa SeisImager module to model the subsurface velocity structure along the profile. Plate 3 shows a typical seismic refraction record collected at a similar river crossing site.

Plate 3: Seismic Refraction Record Example

Each horizontal trace along the vertical distance axis corresponds to a geophone spaced at 5 m intervals, the horizontal axis is time (measured in milliseconds) and the black wavelets in the seismic record correspond to acoustic energy arrivals at the geophones from the detonation of the seismic impact source. The picked first arrival times are indicated by red ticks. Geophones further from the seismic source have later arrival times. The travel time data were translated into velocity models using tomographic i.e. "imaging by sections" inversion process. The tomographic method uses an initial velocity model and traces travel time rays through the model. The calculated travel time are compared to the measured travel times and the velocity model is iteratively modified to minimize the difference between the model's theoretical travel times and the travel times measured from the field data. Plate 4 shows an example of a tomographic model (red dots) versus actual travel time data (blue lines) collected at a similar river crossing. A significant difference in the resulting tomographic model compared to layer-based algorithms is that sharp interfaces are often vertically smoothed into artificial "transition zones" across actual geological interfaces. However, tomographic inversion can improve definition of lateral changing velocities in the subsurface as well as "velocity inversions", or low velocity zones, which are typically not imaged by traditional layer modelling.

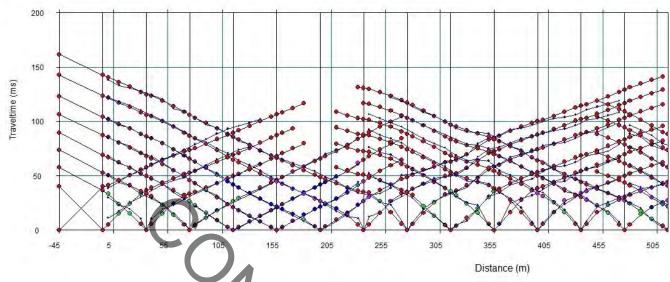


Plate 4: Tomographic Model Example

As stated, the seismic refraction survey method assumes that velocities increase with depth. If instead, a low velocity layer underlies a higher velocity later, the lower layer may not be correctly resolved using this approach. Similarly, thin layers may remain undetected by the seismic refraction survey method.

2.2 Electrical Resistivity Processing

ERT data sets were initially downloaded and edited using IRIS Instruments Prosys II v3.09 software. LiDAR elevation data were then added to the ERT data sets using Prosys.

Resultant processed ERT data sets were then imported into RES2DINV v4.06 (Geotomo Software), where any remaining outlying data points were removed. A least-squares finite-element inversion (Loke & Barker 1996) was applied to the edited data to convert apparent resistivity data to "true" resistivity resolved at "true" depth, taking into consideration the topography.

The resultant resistivity and seismic velocity models were then plotted as cross-sections using the Golden Software Surfer v16.6 mapping program.

3.0 REFERENCES

- Redpath, Bruce B. 1973. Technical Report E-73-4 Seismic Refraction Exploration for Engineering Site Investigations. Prepared for U.S. Army Engineer Waterways Experiment Station, Explosive Excavation Research Laboratory. Livermore, California.
- Loke, M. H., and R. D. Barker, Rapid least-squares inversion of apparent resistivity pseudo-sections using quasi-Newton method: Geophysical Prospecting, 48, 181-152, 1996.
- Milsom, J. & Erikson, A., 2011. Field Geophysics, 4th ed., John Wiley & Sons Ltd, p.10 & p.187.
- Reynolds, J., 2011. An Introduction to Applied and Environmental Geophysics, 2nd ed., John Wiley & Sons Ltd, p.291.

Juciu

4.0 LIMITATIONS OF GEOPHYSICAL METHODS

Golder has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing in Canada, subject to the time limits and physical constraints applicable to the work described in this report. No other warranty, express or implied, is made. The work completed, as documented in this report, is subject to the Terms and Conditions submitted to the Client.

This report has been prepared for the specific site, objective, development and/or purpose described to Golder by the Client, and is subject to the scope of work, financial and scheduling constraints of the assignment and the agreement entered into with the Client. The factual data, interpretations and recommendations pertain to this specific project, as described in this report, are based on the information obtained during the assessment by Golder on the dates cited in the report and are not applicable to any other project or site location. The validity of this report is affected by any change of site conditions, purpose, development plans or significant delay from the date of this report to initiating or completing the project. If changes or delays occur, Golder cannot be responsible for the use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The inferences concerning the site conditions contained in this report are based on information obtained during the assessment conducted by Golder personnel, and are based solely on the condition at the time of the assessment, supplemented by historical and/or other information obtained by Golder, as described in this report. The conclusions presented in this report represent the judgment of the assessor, and are based on observations and measurements made, and on-site conditions observed on the date(s) cited in this report. Due to the nature of the investigation, and the limited data available, the assessor cannot warrant against undiscovered features that may impact the project, nor variations in subsurface conditions between measuring points.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express, written consent. The report, all plans, data, drawings and other documents, as well as all electronic media prepared by Golder, are considered its professional work product and shall remain the copyright property of Golder.

It is a fundamental assumption for geophysical survey techniques that there will be sufficient physical property contrast between the media being investigated. However, physical properties can vary in the field such that media and subsurface bodies may not be sufficiently in contrast with their surroundings and result in uncertainty with respect to data interpretation. It is recommended that subsurface conditions interpreted through geophysical survey techniques be verified by physical sampling and/or inspection, in order to confirm and calibrate the data interpretation. Once verification data are available through future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the interpretations, conclusions and recommendations of this report, and to provide amendments, as required.

https://golderassociates.sharepoint.com/sites/108860/project files/5 technical work/7000 - morice river crossing/geotech/reporting/app e - geophysics/app e - geophysical methods.docx

APPENDIX F ARD/ML Geochemical Analysis Results

Table 1: Acid Base Accounting Results

Object	Sample Identifier	Laboratory ID	Paste pH	Fizz Test	TIC	C(T)	S(T)	S(SO ₄)	S(S ⁻²)	Insoluble S	AP	Modified (Bulk) NP	CaCO ₃ NP	Bulk NPR	Carbonate NPR	
ID	Sample identifier	Laboratory ID	Paste pri	FIZZ TESL				0/						(NPR)	(CaNPR)	1
					%			70					(eq. kg CaCO ₃ /	tonne)		
7-N-13	BH20-MOR-05 59.33 - 59.7m	13385-01	8.96	None	0.05	0.047	0.008	<0.01	<0.01	<0.01	<0.3	17.3	4.2	NA	NA	Non-PAG
7-N-14	BH20-MOR-05 50.44 0 50.83 m	13385-02	9.05	None	0.01	0.011	0.013	<0.01	0.01	0.01	<0.3	13	0.8	NA	NA	Non-PAG
7-N-19	BH20-MOR-03 41.13 to 41.34m	13553-01	8.80	Slight	0.12	0.114	0.011	<0.01	<0.01	<0.011	<0.3	23.5	10.0	NA	NA	Non-PAG
7-N-20	BH20-MOR-05 31.32 to 31.49m	13553-02	8.97	None	0.07	0.062	0.024	<0.01	<0.01	<0.024	<0.3	28.6	5.8	NA	NA	Non-PAG
7-N-21	BH20-MOR-05 40.35 to 40.5m	13553-03	9.03	None	0.05	0.049	0.008	<0.01	<0.01	<0.008	<0.3	15	4.2	NA	NA	Non-PAG

Note:

S = Sulphur

SO₄ = Sulphate

S⁻² = Sulphide

AP = Acid potential in tonnes CaCO3 equivalent per 1000 tonnes of material. AP is determined from the measured sulphide-sulphur content.

NP = Neutralization potential in tonnes CaCO3 equivalent per 1000 tonnes of material.

NET NP = NP - AP

Carbonate NP is calculated from TIC originating from carbonate minerals and is expressed in kg CaCO3/

Sulphate Sulphur determined by 25% HCI Leach with S by ICP Finish

Sulphide Sulphur determined by Sobek 1:7 Nitric Acid Leach with S by ICP Finish

Insoluble S is acid insoluble S (Total S - (Sulphate S + Sulphide S)).

Bold values indicate concentrations that exceed limits set in the ARCRP. Limits for Sulphide Sulphur set at 0.1%; Limit for Paste pH set at <5.5.

PAG = Potentially Acid Generating

¹ Final classification of PAG or Non-PAG is derived from ARCRP Section 4.1 and 6.0. Determination of classification is based on Carbonate NPR, Paste pH, and sulphide sulphur.

I is based on Darbonate NPR, Paste pH, and sulphide sulphur.

Table 2: ICP Metal Results

		Laboratory ID		Ag	AI	Ва	Са	Cr	Cu	Fe	K	Li	Mg	Mn	Na	Ni	Р	S	Sr
Object ID	Sample Identifier	Unit	Normal Trace Element Group	ppm	%	ppm	%	ppm	ppm	%	%	ppm	%	ppm	%	ppm	%	%	ppm
	Limit of			0.01	0.01	5	0.01	1	0.5	0.01	0.01	1	0.01	2	0.01	0.5	0.005	0.01	0.5
	Normal Trace Element Concentra	tions ¹	Normal Trace Element Multiplier	1	2								10	11	12	13	14	15	16
			1x	<u>0.11</u>	<u>7.8</u>	<u>330</u>	<u>7.6</u>	<u>170</u>	<u>87</u>	<u>8.65</u>	<u>0.83</u>	<u>17</u>	<u>4.6</u>	<u>1500</u>	<u>18000</u>	<u>130</u>	<u>0.11</u>	<u>0.03</u>	<u>465</u>
	Basaltic Rocks		5x	0.55	39	1650	38	850	435	43.25	4.15	85	23	7500	90000	650	0.55	0.15	2325
			10x	1.1	78	3300	76	1700	870	86.5	8.3	170	46	15000	180000	1300	1.1	0.3	4650
Object ID	Sample Identifier	Laboratory ID	Normal Trace Element Group	Ag	AI	Ва	Ca	Cr	Cu	Fe	K	Li	Mg	Mn	Na	Ni	Р	S	Sr
7-N-13	BH20-MOR-05 59.33 - 59.7m	13385-01	Basaltic Rocks	0.05	2.02	142	1.11	50	27.3	4.36	0.15	10	1.43	870	0.16	55	<u>0.14</u>	<0.01	191
7-N-14	BH20-MOR-05 50.44 0 50.83 m	13385-02	Basaltic Rocks	0.06	0.97	80	0.77	35	13.5	3.74	0.15	5	0.75	728	0.13	18	<u>0.17</u>	0.02	40.9
7-N-19	BH20-MOR-03 41.13 to 41.34m	13553-01	Basaltic Rocks	0.03	1.62	269	1.31	55	15.8	3.89	0.14	7	0.99	578	0.17	24	<u>0.18</u>	<0.01	389
7-N-20	BH20-MOR-05 31.32 to 31.49m	13553-02	Basaltic Rocks	0.04	3.54	54	1.61	71	44.6	4.43	0.07	<u>19</u>	1.72	590	0.25	54	<u>0.13</u>	0.01	86.1
7-N-21	BH20-MOR-05 40.35 to 40.5m	13553-03	Basaltic Rocks	0.03	1.39	240	0.99	36	20.5	3.67	0.14	9	1.13	755	0.14	23	0.17	<0.01	189

Notes:

1. "Normal" trace element concentrations as presented in Price, 199

9.99 indicate Normal trace element concentration expressed as order of magnitude.

NA = No data available

<u>Underlined</u> values indicate sample concentrations greater than the normal concentration **Bold** values indicate sample concentrations greater than five times the normal concentration

Highlighted values indicate sample concentration greater ten times the normal concentration. ppm = parts per million <u>54</u> <u>1.61</u> <u>71</u> <u>44.6</u> <u>4.43</u> <u>0.03</u> <u>1.39</u> <u>240</u> <u>0.99</u> <u>36</u> <u>20.5</u> <u>3.67</u>

Table 2: ICP Metal Results con't

		Laboratory ID		Ti	V	Zn	Zr	As	Be	Bi	Cd	Ce	Со	Cs	Ga	Ge	Hf	Hg	In
Object ID	Sample Identifier	Unit	Normal Trace Element Group	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	Limit of Detect			0.01	1	1	0.5	1	0.1	0.02	0.01	0.05	0.1	0.05	0.1	0.1	0.05	0.01	0.02
	Normal Trace Element Concentra	tions ¹	Normal Trace Element Multiplier	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
			1x	<u>1.38</u>	<u>250</u>	<u>105</u>	<u>140</u>	<u>2</u>	<u>1</u>	<u>0.007</u>	<u>0.22</u>	<u>48</u>	<u>48</u>	<u>1.1</u>	<u>17</u>	<u>1.3</u>	<u>2</u>	<u>0.09</u>	<u>0.22</u>
	Basaltic Rocks		5x	6.9	1250	525	700	10	5	0.035	1.1	240	240	5.5	85	6.5	10	0.45	1.1
			10x	13.8	2500	1050	1400	20	10	0.07	2.2	480	480	11	170	13	20	0.9	2.2
Object ID	Sample Identifier	Laboratory ID	Normal Trace Element Group	Ti	V	Zn	Zr	As	Be	Bi	Cd	Ce	Со	Cs	Ga	Ge	Hf	Hg	In
7-N-13	BH20-MOR-05 59.33 - 59.7m	13385-01	Basaltic Rocks	0.26	99	83	56.7	<u>7</u>	0.8	<u>0.06</u>	0.09	<u>64.61</u>	16.6	0.66	10.7	0.3	1.54	<0.01	0.04
7-N-14	BH20-MOR-05 50.44 0 50.83 m	13385-02	Basaltic Rocks	0.32	96	78	52.3	1	0.7	<u>0.09</u>	0.03	<u>67.59</u>	12	0.53	8.8	0.6	1.42	0.03	0.04
7-N-19	BH20-MOR-03 41.13 to 41.34m	13553-01	Basaltic Rocks	0.25	89	95	44.8	<u>3</u>	0.8	<u>0.07</u>	0.1	<u>82.06</u>	10.1	0.65	10.2	0.5	1.35	<0.01	0.04
7-N-20	BH20-MOR-05 31.32 to 31.49m	13553-02	Basaltic Rocks	0.11	133	84	39.8	1	<u>1.2</u>	<u>0.07</u>	0.13	<u>76.17</u>	20.3	<u>1.4</u>	12.2	0.2	1.56	<0.01	0.04
7-N-21	BH20-MOR-05 40.35 to 40.5m	13553-03	Basaltic Rocks	0.31	90	105	58.1	2	0.8	0.07	0.06	92.03	10.7	0.52	9.6	0.5	1.64	0.01	0.05

Notes:

1. "Normal" trace element concentrations as presented in Price, 199

9.99 indicate Normal trace element concentration expressed as order of magnitude.

NA = No data available

<u>Underlined</u> values indicate sample concentrations greater than the normal concentration **Bold** values indicate sample concentrations greater than five times the normal concentration Highlighted values indicate sample concentration greater ten times the normal concentration. ppm = parts per million <u>0.31 90 105 58.1 2 0.8 0.07</u>

Table 2: ICP Metal Results con't

		Laboratory ID		La	Lu	Мо	Nb	Pb	Rb	Sb	Sc	Se	Sn	Та	Tb	Те	Th	TI	U
Object ID	Sample Identifier	Unit	Normal Trace Element Group	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		Limit of Detection		0.1	0.01	0.05	0.05	0.2	0.2	0.05	0.1	1	0.3	0.05	0.02	0.05	0.1	0.02	0.05
	Normal Trace Element Concentra	ations ¹	Normal Trace Element Multiplier	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
			1x	<u>15</u>	<u>0.6</u>	<u>1.5</u>	<u>19</u>	<u>6</u>	<u>30</u>	<u>0.2</u>	<u>30</u>	<u>0.05</u>	<u>1.5</u>	<u>1.1</u>	<u>0.8</u>	<u>NA</u>	<u>4</u>	<u>0.21</u>	<u>1</u>
	Basaltic Rocks		5x	75	3	7.5	95	30	150	1	150	0.25	7.5	5.5	4	NA	20	1.05	5
			10x	150	6	15	190	60	300	2	300	0.5	15	11	8	NA	40	2.1	10
Object ID	Sample Identifier	Laboratory ID	Normal Trace Element Group	La	Lu	Мо	Nb	Pb	Rb	Sb	Sc	Se	Sn	Та	Tb	Те	Th	TI	U
7-N-13	BH20-MOR-05 59.33 - 59.7m	13385-01	Basaltic Rocks	<u>35.1</u>	0.29	1.26	0.59	<u>8.3</u>	10.2	0.11	13.8	<1	1.1	<0.05	<u>0.81</u>	<0.05	<u>4.9</u>	0.04	<u>1.55</u>
7-N-14	BH20-MOR-05 50.44 0 50.83 m	13385-02	Basaltic Rocks	<u>35.5</u>	0.26	<u>2.11</u>	1.09	<u>8.6</u>	10	0.16	7.3	<1	0.9	<0.05	0.72	<0.05	<u>5.1</u>	0.08	<u>2.51</u>
7-N-19	BH20-MOR-03 41.13 to 41.34m	13553-01	Basaltic Rocks	<u>40.1</u>	0.21	0.97	0.47	<u>9.2</u>	8.3	0.06	9.4	<1	1	<0.05	0.7	<0.05	<u>4.6</u>	0.05	<u>2.08</u>
7-N-20	BH20-MOR-05 31.32 to 31.49m	13553-02	Basaltic Rocks	<u>34.8</u>	0.22	0.61	0.05	<u>9.7</u>	6.7	<0.05	11.2	<1	1.1	<0.05	0.65	<0.05	<u>5.4</u>	0.04	<u>2.08</u>
7-N-21	BH20-MOR-05 40.35 to 40.5m	13553-03	Basaltic Rocks	<u>43.7</u>	0.23	0.99	0.75	<u>9.7</u>	7.6	0.05	10.8	<1	1	<0.05	0.79	<0.05	<u>6.4</u>	0.04	2.42

Notes:

1. "Normal" trace element concentrations as presented in Price, 199

9.99 indicate Normal trace element concentration expressed as order of magnitude.

NA = No data available

<u>Underlined</u> values indicate sample concentrations greater than the normal concentration

Bold values indicate sample concentrations greater than five times the normal concentration

Highlighted values indicate sample concentration greater ten times the normal concentration. ppm = parts per million <u>9.2</u> 8.3 0.0 <u>43.7</u> 0.22 0.61 0.05 9.7 6.7 <0.0 <u>43.7</u> 0.23 0.99 0.75 9.7 7.6 0.0E

Table 2: ICP Metal Results con't

		Laboratory ID		W	Y	Yb
Object ID	Sample Identifier	Unit	Normal Trace Element Group	ppm	ppm	ppn
		Limit of Detection]	0.1	0.05	0.1
	Normal Trace Element Concentra	ations ¹	Normal Trace Element Multiplier	49	50	51
			1x	<u>0.7</u>	<u>21</u>	2.1
	Basaltic Rocks		5x	3.5	105	10.
			10x	7	210	21
Object ID	Sample Identifier	Laboratory ID	Normal Trace Element Group	W	Y	Yb
7-N-13	BH20-MOR-05 59.33 - 59.7m	13385-01	Basaltic Rocks	0.4	<u>22.52</u>	1.9
7-N-14	BH20-MOR-05 50.44 0 50.83 m	13385-02	Basaltic Rocks	0.6	18.76	1.7
7-N-19	BH20-MOR-03 41.13 to 41.34m	13553-01	Basaltic Rocks	0.2	19.49	1.5
7-N-20	BH20-MOR-05 31.32 to 31.49m	13553-02	Basaltic Rocks	<0.1	19.75	1.5
7-N-21	BH20-MOR-05 40.35 to 40.5m	13553-03	Basaltic Rocks	0.2	21.01	1.7
Notes: 1. "Normal" 9.99 indica NA = No da <u>Underlined</u>	trace element concentrations as pr te Normal trace element concentrat ta available values indicate sample concentration	resented in Price, 1 tion expressed as o ons greater than the	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ta available values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration			
Notes: 1. "Normal" 9.99 indicat NA = No da <u>Underlined</u> Bold values Highlighted	trace element concentrations as pr te Normal trace element concentrat ita available values indicate sample concentrations gr values indicate sample concentrations gr	resented in Price, 1 tion expressed as o ons greater than the reater than five time	99 rder of magnitude. e normal concentration s the normal concentration			

Request OGC2021-011 Page 193

Table 3: Shake Flask Extraction

Table 5. Sliake Flask Extraction							
O <u>bject ID</u> Ş <u>ample Identifier</u> Laboratory ID	BC WQG ¹ Aquatic Life (Freshwater)	MCV	7-N-13 BH20-MOR-05 59.33 - 59.7m 13385-01	7-N-14 BH20-MOR-05 50.44 0 50.83 m 13385-02	7-N-19 BH20-MOR-03 41.13 to 41.34m 13553-01	7-N-20 BH20-MOR-05 31.32 to 31.49m 13553-02	7-N-21 BH20-MOR-05 40.35 to 40.5m 13553-03
Physical Parameter pH (pH units)	6.5 to 9.0	1	8.56	8.51	8.09	8.74	8.74
Hardness (as CaCO3 equivalents)	0.010 0.0	1	4.2	3.3	5.7	5.1	3
Redox (mV)			362.79	347.16	242.18	235.83	251.46
Conductivity (µS/cm)			163.85	121.54	160.49	371.17	183.46
Acidity (to pH 4.5 as CaCO3 equivalents)			#N/A	#N/A	0	0	0
Total Acidity (to pH 8.3 as CaCO3 equivalents)			#N/A	#N/A	1.05	0	0
Alkalinity (as CaCO3 equivalents)			56.61	48.16	62.32	150.14	72.65
Chloride	150	1	< 1	< 1	2	< 1	< 1
Fluoride	0.4 - 1.04 ^(a)	max, H	0.45	0.26	0.17	0.88	0.28
Sulphate	128 - 429 ^(b)	Н	3	3	4	2	5
Suprate	120 - 429	1	3	5	4	2	5
lon Balance							
Major Anions (meq/L)			1.22	1.04	1.40	3.09	1.57
Major Cations (meq/L)			1.80	1.38	1.73	3.65	1.92
Difference (meq/L)			-0.58	-0.34	-0.34	-0.56	-0.35
Balance (%)			-19.3%	-14.0%	-10.8%	-8.2%	-10.1%
Dissolved Metals							
Aluminum	0.05 ^(c)	d	0.792	0.818	1.07	0.195	1.18
Antimony	0.009 ^(d)	W, V, t	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Arsenic	0.005	vv, v, t	0.0013	0.0016	0.002	0.0024	0.0011
Barium	1	W.t	0.0013	0.00133	0.002	0.00024	0.0009
Beryllium	0.00013	W, t	0.00001	< 0.000007	< 0.00007	< 0.000007	< 0.000007
Bismuth	0.00013	VV, L	0.00007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Boron	1.2	l t	0.105	0.055	0.066	0.3	0.059
	0.000006 - 0.000123 ^(e)	H, d	0.000013	0.00024	0.000007	0.000005	0.000003
Cadmium Calcium	0.000006 - 0.000123	п, а	1.43	1.18	2.18	1.98	1.12
		1					
Chromium	0.001 (VI) / 0.0089 (III) ^(f)	W, V, t	0.00066	0.00011	0.0004	0.0003	0.0005
Cobalt	0.004	t	0.000155	0.000064	< 0.000004	< 0.000004	< 0.000004
Copper	0.002 (9)	H, t	0.0021	0.0004	< 0.0002	< 0.0002	0.0007
Iron	0.35	max, d	0.354	0.172	0.052	0.06	0.072
Lead	0.0041 - 0.0046 ^(h)	H, t	0.00009	0.00006	0.00005	0.00006	0.00005
Lithium			0.0093	0.0042	0.011	0.0031	0.0058
Magnesium			0.158	0.088	0.064	0.044	0.061
Manganese	0.6 - 0.8 ⁽ⁱ⁾	H, t	0.00633	0.00275	0.0014	0.0012	0.0016
Mercury	0.00000125	MeHg, t	0.02	0.02	< 0.01	< 0.01	< 0.01
Molybdenum	≤1		0.0151	0.0239	0.0068	0.0133	0.0028
Nickel	0.025 ())	W, H, t	0.0005	< 0.0001	0.0001	0.0001	< 0.0001
Phosphorus		-	0.015	0.011	0.006	< 0.003	0.013
Potassium		_	0.167	0.318	0.108	0.166	0.105
Selenium	0.002	d	0.00028	0.00017	0.00043	0.003	0.00089
Silicon			3.42	2,55	2.36	4.68	2.67
Silver	0.00005 ^(k)	H, t	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Sodium		-	36.9	27.7	34	79	39.4
Strontium			0.00298	0.00238	0.0069	0.006	0.0031
Sulphur		_	< 1	< 1	< 1	< 1	1
Thallium	0.0008	W, t	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
Tin			0.00028	0.00024	0.00007	0.00007	0.00012
Titanium			0.0223	0.00499	0.0028	0.0051	0.0036
Uranium	0.0085	W, t	0.00163	0.00705	0.00416	0.00661	0.00478
Vanadium			0.0302	0.0508	0.0338	0.302	0.0389
Zinc	0.033 (1)	H, t	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Zirconium		-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Tellurium							
Thorium					· · · · · · · · · · · · · · · · · · ·		

Notes:

Notes: All concentrations in milligrams per litre (mg/L), unless otherwise noted. 1. Criteria from "British Columbia Approved Water Quality Guidelines (Criteria)", 2006 Edition (updated March 2018) and "Working Water Quality Guidelines for British Columbia (June 2017)" (W). Guidelines are for long-term average water quality guideline exists. Screening is for dissolved metals (d); where criteria for dissovled metals were unavailable, the criteria for total metals (t) was applied. Criteria include chloride (CI), hardness (H), and pH (pH) dependent guidelines. Accessed June 8, 2019. Available online at: http://www2.gov.bc.ca/gov/content/environment/air-landwater/water-quality/water-quality-guidelines.

(a) Fluoride guideline = 0.4 where H≤10; (-51.73+92.57 log₁₀ [H])*0.01 where H>10

(a) Fundate guideline = 0.4 where H≤10; (31.5452.0) fog(F)) 0.01 where F100 (b) Sulfate guideline = 128 where H<30; 218 where 31<47-57; 309 where 76<H<180; 429 where 181<H<250; Note *site-specific assessment may be required where H>250 (c) Aluminum guideline = 0.05 where pH≥6.5; e^{(1.6-3.327(pH)+0.402(pH)+2)} where pH<6.5 (d) Guideline is for Antimony (III) (e) Cadmium guideline = e^{(0.736(pH)+0.403)}/1000

(g) Copper guideline = ≤0.002 where H≤50; 0.04(H)/1000 where H>50

(i) Manganese guideline = no guideline where H≤8; (3.31+e[1.273(InH)-4.704])/1000 where H>8 (i) Manganese guideline = (0.0044(H) + 0.605)

(i) Maniganese guidenine - (0.0044(n) + 0.005) (j) Nickel guideline = 0.025 where H≤60; e(0.76((HH)+1.06)/1000 where 60<H<180; 0.150 where H≥180 (k) Silver guideline = 0.0075 where H≤100; 0.0015 where H>100 (l) Zinc guideline = 0.0075 where H≤90; (7.5+[0.75(H=90])/1000 where H>90 m bgs = metres below ground surface; mV = milliVolts; and µS/cm = microSiemens per centimetre *Italics* indicate laboratory detection limit greater than the applicable guidelines.

Value

Exceeds BC WQGs for the protection of Freshwater Aquatic Life

golder.com